
OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 1 of 32

Geomatics
Guidance Note Number 7, part 4

EPSG Geodetic Parameter Relational Database – Developers Guide

Revision history:
Version Date Amendments

1.0 October 2004 First release of this document, GN7 part 1. Former GN7 now released as part
2.

1.1 November 2004 Minor editorial corrections to text. Annex E SQL scripts updated.
2.0 April 2006 Amendment to deprecation rules. Updated references to EPSG.
2.1 February 2007 Deprecation rules updated. Policy on code uniqueness clarified. Additional

information on user update utility added. Minor editorial corrections to text.
3 July 2007 Use of data conditions amended. Annex F added.
4 April 2009 Major revision to include web registry. Access- and SQL-specific discussion

moved to new GN7 part 4.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 2 of 32

CONTENTS

PREFACE ... 3

1 EPSG DATASET RELATIONAL IMPLEMENTATION ... 4
1.1 OVERVIEW OF RELATIONAL DATA STRUCTURE .. 4
1.2 SQL SCRIPTS DESCRIBING THE DATA MODEL AND DATASET CONTENT .. 6

2 SEARCHING THE RELATIONAL DATASET ... 8
2.1 MS ACCESS FORMS AND REPORTS ... 8
2.2 MS ACCESS QUERIES ... 8
2.3 VALID DATA .. 8
2.4 SEARCHING BY NAME .. 8
2.5 SEARCHING BY AREA OF USE .. 8
2.6 COORDINATE REFERENCE SYSTEMS .. 8
2.7 COORDINATE OPERATIONS .. 10

ANNEX A - MS ACCESS DATABASE FORMS AND REPORTS .. 12

ANNEX B – MS ACCESS USER UPDATE UTILITY ... 14

ANNEX C – MS ACCESS REGISTRY IMPORT UTILITY .. 16

ANNEX E – SQL SCRIPTS FOR EXTRACTING DATA ... 18

(There is no annex D in this document)

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 3 of 32

PREFACE

The EPSG Geodetic Parameter Dataset, abbreviated to the EPSG Dataset, is a repository of parameters
required to:

• define a coordinate reference system (CRS), which ensures that coordinates describe position
unambiguously.

• define transformations and conversions that allow coordinates to be changed from one CRS to
another CRS. Transformations and conversions are collectively called coordinate operations.

The EPSG Dataset is maintained by the OGP Surveying and Positioning Committee's Geodetic
Subcommittee. It conforms to ISO 19111 – Spatial referencing by coordinates. It is distributed in three
ways:

• the EPSG Registry, in full the EPSG Geodetic Parameter Registry, a web-based delivery
platform in which the data is held in GML using the CRS entities described in ISO 19136.

• the EPSG Database, in full the EPSG Geodetic Parameter Database, a relational database
structure where the entities which form the components of CRSs and coordinate operations are in
separate tables, distributed as an MS Access database;

• in a relational data model as SQL scripts which enable a user to create an Oracle, MySQL,
PostgreSQL or other relational database and populate that database with the EPSG Dataset;

OGP Surveying and Positioning Guidance Note 7 is a multi-part document for users of the EPSG Dataset.

• Part 0, Quick Start Guide, gives a basic overview of the Dataset and its use.

• Part 1, Using the Dataset, sets out detailed information about the Dataset and its content,
maintenance and terms of use.

• Part 2, Formulas, provides a detailed explanation of formulas necessary for executing coordinate

conversions and transformations using the coordinate operation methods supported in the EPSG
dataset. Geodetic parameters in the Dataset are consistent with these formulas.

• Part 3, Registry Developer Guide, is primarily intended to assist computer application developers

who wish to use the API of the Registry to query and retrieve entities and attributes from the
dataset.

• Part 4, Database Developer Guide, (this document), is primarily intended to assist computer

application developers who wish to use the Database or its relational data model to query and
retrieve entities and attributes from the dataset.

The complete text may be found at http://www.epsg.org/guides/index.html. The terms of use of the dataset
are also available at http://www.epsg.org/CurrentDB.html.

In addition to these documents, the Registry user interface contains online help and the Database user
interface includes context-sensitive help accessed by left-clicking on any label

This Part 4 of the multipart Guidance Note is primarily intended to assist computer application developers
in using the EPSG geodetic parameter relational database and SQL scripts. It may also be useful to other
users of the data. Readers are recommended to have read Part 1 of the guidance note before this part.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 4 of 32

1 EPSG DATASET RELATIONAL IMPLEMENTATION

1.1 Overview of relational data structure

An overview of the relational table structure is shown in the diagram below:

There has been no change to the overall structure between dataset versions 6 and 7.

The 21 tables forming the relational dataset are:

Access table name SQL script table name Table content (see note)
Alias epsg_alias Aliases for all object types. S
Area epsg_area Text and minimum bounding geographic

rectangle descriptions for area of use,
referenced by datum, CRS and coordinate
operation records.

D

Change epsg_change A record of change requests received by EPSG
and summary of changes made to records.

Coordinate Axis epsg_coordinateaxis Coordinate axis abbreviation, orientation and
order. Also links coordinate axis name with
coordinate system.

I

Coordinate Axis Name epsg_coordinateaxisname Coordinate axis name and description. D
Coordinate Reference
System

epsg_coordinatereferencesystem CRS name, type and scope. Also the base CRS
for projCRSs and constituent single CRSs for
compound CRSs.

D

Coordinate System epsg_coordinatesystem Coordinate system name, type and dimension.
Referenced from CRS table.

D

Coordinate_Operation epsg_coordoperation Map projection, transformation and
concatenated operation name, type and scope.
Transformation version and accuracy. Codes
for transformation source and target CRS.

D

Coordinate Reference System

Coordinate Operation

Coordinate Axis

Coordinate operation parameters

Single Coordinate Operation

Datum

Coordinate System

Geographic
2D

Geocentric

Projected

Vertical

Engineering

Ellipsoidal

Polar

Cartesian

Grav-Related

Linear

Compound

Coordinate
Axis Name

Geodetic

Vertical

Engineering

Coord Operation
Path

Coordinate
Conversion Coord Operation

Method

Coord Operation
Parameter Value

Coord Operation
Parameter Usage

Coord Operation
Parameter

Unit of Measure

Ellipsoid

Prime
Meridian

Coordinate
Transformation

Concatenated
Coord Operation

Coordinate
Axis

Version 2.0 - Oct 2004Entity-Relationship diagram EPSG v 6

Affine

Cylindrical

Geographic
3D

source
target

Spherical

restrictions!

Area of Use

Deprecation

Any entityAliasNaming System

Change

Relationships of Alias,
Supersession and Deprecation
with any entity

for derived CRS's only

Supersession

base

superseded by superseded

deprecated valid

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 5 of 32

Access table name SQL script table name Table content (see note)
Coordinate_Operation
Method

epsg_coordoperationmethod Transformation and conversion method name,
formula, example and reversibility.

D

Coordinate_Operation
Parameter

epsg_coordoperationparam Transformation and conversion parameter
name and description.

D

Coordinate_Operation
Parameter Usage

epsg_coordoperationparamusage Transformation and conversion parameter
order and reversibility. Also links coordinate
operation parameters with coordinate
operation methods.

I

Coordinate_Operation
Parameter Value

epsg_coordoperationparamvalue Transformation and conversion (map
projection) parameter values.

I

Coordinate_Operation
Path

epsg_coordoperationpath Concatenated operation step and step sequence
information.

I

Datum epsg_datum Datum name, type, scope, epoch and origin
information. Referenced from CRS table.

D

Deprecation epsg_deprecation Information for tracking deprecated records
and their replacement (if any).

Ellipsoid epsg_ellipsoid Ellipsoid name and dimensions. Referenced
from datum table.

D

Naming System epsg_namingsystem Alias naming system names. D
Prime Meridian epsg_primemeridian Prime meridian name, Greenwich longitude. D
Supersession epsg_supersession Information for tracking valid records which

have been superseded by more recent data.

Unit of Measure epsg_unitofmeasure Length, angle and scaling unit name and
conversion factor. Referenced by ellipsoid and
coordinate operation parameters, coordinate
axis and prime meridian.

D

Version History epsg_versionhistory Dataset version release record.
Notes:
1. Where the table content column has a D to its right, the table content includes primary object data such as name and code.
These tables additionally include metadata to describe information origin. The table includes a field indicating whether
records are deprecated. Valid records have deprecation = no = 0. For records where deprecation = yes = 1, the records are
invalid, i.e. have been deprecated (flagged as invalid but remain in the dataset). Deprecated records should only be used
when documenting or reversing use of the record that was made before it was declared invalid.
2. Where the table content column has an I to its right, the table is an intersection table within the relational data model. It
includes essential data fields used by one or more of the tables to which it is joined.
3. Where the table content column has an S to its right, the table content is entirely secondary data which supplements the
primary data.
4. Other tables contain supplementary information to facilitate data management or automated computer access to the
primary data.

Field names within tables are consistent between the Access and SQL versions except for:

Access table name Access field name SQL script table name SQL script field name
Alias ALIAS CODE epsg_alias alias_code
Change COMMENT epsg_change change_comment
Coordinate Axis ORDER epsg_coordinateaxis coord_axis_order

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 6 of 32

Access to SQL data type conversions are:

Access type SQL type Comment
Yes/No SMALLINT 1 = Yes / 0 = No
Date/Time DATE
Memo VARCHAR(4000) This will not work with MySQL, which needs TEXT
Ole object BLOB (This type declaration not currently used).
Text VARCHAR(length)
Binary LONG (This type declaration not currently used).
Double DOUBLE PRECISION
Long integer INTEGER
Integer SMALLINT
Byte LONG

The strategy employed for the EPSG dataset is to commit to retaining backward compatibility with the
above SQL table and field structure, data type and field names, which will remain unchanged. However in
order to facilitate product improvement OGP reserves the right to supplement these by additional fields or
tables when necessary. If there is perceived to be a need to include additional capability, this will be done
such that the development will retain backward compatibility with the above structure. Note however that
new fields might be inserted within existing tables: programmers should never rely on the order of fields
in a table, but only on the names of the fields.

1.2 SQL scripts describing the data model and dataset content

From v3.0 the EPSG dataset has been implemented in Microsoft Access, which in addition to being the
data repository has acted both as a data entry tool for the OGP Geodesy Subcommittee (until replaced for
these purposes by the registry from version 7) and as a searching, browsing and reporting tool for some
users.

A further use that the Geodesy Subcommittee hoped the database might be put to was the querying of the
dataset by software programs. However, the reliance on a Microsoft Windows database server and the lack
of cross platform support for such queries meant that such uses have not been developed. To address this
issue, from version 6.5.3 onwards, three additional items are being provided. These are:

1) A Data Description Language (DDL) file called epsg_v[version].mdb_Tables.sql which contains
the SQL CREATE statements necessary to create a database equivalent to the Access on an SQL
server.

2) A Data Manipulation Language (DML) file called epsg_v[version].mdb_Data.sql which contains
the SQL INSERT statements necessary to populate a database created using the
EPSG*Tables.SQL DDL file with the current contents of the dataset.

3) A second DDL file epsg_v[version].mdb_fKeys.sql which contains the SQL ALTER statements
necessary to enforce Foreign Key Constraints on the tables. Note that this should either not be run
(if users are not intending to add supplementary data, there is no need to run this), or that it
should be run after the tables have been populated using the DML file.

Platforms that have been tested are listed below.

1.2.1 Oracle
The import of the DDL & DML scripts have been tested on an Oracle version 9i release 2 i386 server.

The Oracle implementation is not in any way non-standard, the only constraint, already addressed in the
table name translations, is that Oracle table names need be 30 characters or less.

Refer to Oracle documentation for loading instructions.

1.2.2 PostgreSQL
The import of the DDL & DML scripts have been tested on an PostgreSQL version 7.3.4. From the
command line, execute the following (make sure your default user has sufficient privileges):

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 7 of 32

afaichney@localhost:~> psql
afaichney=# create database epsg_v653

CREATE DATABASE

afaichney=# \c epsg_v653

You are now connected to database epsg_v653.

epsg_v653=# \i EPSG_v653.mdb_Tables.sql

<outputs removed>

epsg_v653=# \i EPSG_v653.mdb_Data.sql

<outputs removed>

<Next step is optional>

epsg_v653=# \i EPSG_v653.mdb_fKeys.sql

<outputs removed>
1.2.3 MySQL
MySQL has no support for VARCHARs longer than 254 characters, and so implementations of the
database on MySQL will need to ensure that the non-standard TEXT type is used to replace long
VARCHARs. Also the Foreign Key Constraints in the DDL will fail and should be removed.

With these modifications, import of the scripts into MySQL has been tested with MySQL 4.0.12. From the
command line, execute the following:

afaichney@localhost:~> mysql -u root -p
mysql> create database epsg_v653;

Query OK, 1 row affected (0.00 sec)

mysql> \u epsg_v653

Database changed

mysql> \. EPSG_v653.mdb_Tables.sql

<outputs removed>

mysql> \. EPSG_v653.mdb_Data.sql

<outputs removed>

<Next step optional>

mysql> \. EPSG_v653.mdb_fKeys.sql

<outputs removed>

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 8 of 32

2 SEARCHING THE RELATIONAL DATASET

Information relevant to both the registry and relational database implementations is given in Guidance
Note 7 part 1 (GN7-1) and should be read in conjunction with this section.

2.1 MS Access forms and reports
Included within the Access version of the dataset are several forms and reports, underpinned by some
queries and macros. These are for human interaction with the dataset. There are four groups:

• browse forms which allow users to review individual records by selected topic;
• reports which give to users reports on records by selected topic;
• edit/add forms which allow for maintenance of the dataset content;
• forms which allow users to navigate the above database forms and reports.

Further detail of these forms and reports is given in annex A.

2.2 MS Access queries
The Access database includes several queries which underpin the forms and reports. These have names
beginning with "qry – ".

Additionally, from version 6.6, there are queries which retrieve related data. These have names beginning
with "qry_epsg_gn7_1_". Their use is described in the sections below and in annex E. The sample scripts
in annex E are divided into three sections:

1. Data discovery – scripts to identify records or tabulate related data.
2. Coordinate Reference System description – scripts to retrieve data essential to describing a

coordinate reference system. This includes parameters necessary for geographical to/from grid coordinate
conversions.

3. Coordinate Transformation description – scripts to retrieve data essential to describing a
coordinate transformation. This includes parameters necessary for the execution of datum transformations

2.3 Valid data
As described in GN7-1section 5.5 and annex B, the dataset includes records which are invalid. Record
validity is indicated by the setting in the DEPRECATED field. In general, searches for data should
exclude the invalid records. This may be accomplished by searching for data where the value of the
DEPRECATED field = "false" (or "No" or "0"). Most of the example SQL scripts in annex E include this
constraint.

There may be occasions when there is a requirement to replicate data used previously, regardless of its
current validity. On these rare occasions the search constraint criteria should omit the value of
DEPRECATED. In Annex E to this document, example 1.00 gives SQL script to identify the version and
date of a dataset.

2.4 Searching by Name
See Guidance note 7 Part 1 section 6.2. An example SQL query to search by name or alias is given in
annex E.1.01.

2.5 Searching by Area of Use
See Guidance note 7 Part 1 section 6.3.

2.6 Coordinate Reference Systems
See also Guidance note 7 Part 1 section 6.4.

The primary information for all subtypes of coordinate reference system is stored within the table
"Coordinate Reference System" (Access) or epsg_coordinatereferencesystem (SQL). The field
COORD_REF_SYS_KIND indicates the type of CRS. The CRS table includes fields to cross-reference
supporting information included within the coordinate system, datum and area tables
(COORD_SYS_CODE, DATUM_CODE and AREA_OF_USE_CODE respectively).

A SQL script to identify a CRS code from name or alias is given in annex E example 1.01. SQL scripts to
identify CRS type and validity from CRS code are given in annex E examples 1.04 and 1.05.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 9 of 32

2.6.1 Geographic and geocentric CRSs
SQL scripts to extract from the dataset the essential data for describing geographic and geocentric CRSs,
including datum and ellipsoid information, are given in annex E examples 2.1 and 2.4. For a query which
tabulates these related geodetic CRS records see annex E example 1.06.

2.6.2 Projected and other derived CRSs
The CRS table includes a field named SOURCE_GEOGCRS_CODE which contains the code of the base
CRS for projected (and other derived) coordinate reference systems. The field is only populated when the
CRS is a derived (usually projected) CRS. When this field is populated, so too will be the field
PROJECTION_CONV_CODE which cross-references a map projection (conversion) included within the
coordinate operation table. Projected CRSs inherit geodetic datum from their base geographic CRS: the
DATUM_CODE field is not used for projected CRS records. A record for a projected or other derived
CRS cannot exist until there is a record for the base CRS in the CRS table and a record for the conversion
in the coordinate operation table.

SQL scripts to extract from the dataset the essential data for describing projected CRSs, including datum,
ellipsoid and projection information, are given in annex E examples 2.2 and 2.4.

2.6.3 Vertical and engineering CRSs
SQL scripts to extract from the dataset the essential data for describing a vertical CRS or an engineering
CRS are given in annex E examples 2.3 and 2.4.

2.6.4 Compound CRSs
In the EPSG Dataset, a compound CRS is a geographic or projected CRS combined with a vertical CRS.
The CRS table includes two fields named CMPD_HORIZCRS_CODE and CMPD_VERTCRS_CODE.
These give the codes of the two CRSs which together form the compound CRS. A record for a compound
CRS cannot exist until the record for each of the component CRSs is in the CRS table. See annex E
example 2.5 for an SQL query to retrieve identifying details (i.e. name and code) for each of the
component single CRSs, given the code of the compound CRS. The details for each of the component
single CRSs may then be found and described as above.

2.6.5 Coordinate Systems
Coordinate system information is given in three tables: coordinate system, coordinate axis and coordinate
axis name. A cryptic description of the CS is given in the coordinate system table's COORD_SYS_NAME
field. The CS table also contains the type and dimension (i.e. number of axes) of the CS, together with CS
metadata.

The coordinate axis name table contains axis name and description. The coordinate axis table contains axis
orientation, axis abbreviation and axis order information. If any of these axis attributes are changed, a new
CS is defined which combines with a datum to form a new CRS. Axes for a CS should be presented sorted
by ascending value of the field ORDER (in Access, coord_axis_order in SQL).

See annex E example 2.4 for an SQL script to return coordinate system axis information from CRS code.
This applies to any geographic, geocentric, projected, vertical or engineering CRS. Annex E example 1.07
tabulates projected CRSs with common datum but differing coordinate system.

2.6.6 Datums
The primary information for all subtypes of datum is stored within the table Datum (Access) or
epsg_datum (SQL). The field DATUM_TYPE indicates the type of datum. The datum table includes
fields to cross-reference supporting information included within the area, ellipsoid and prime meridian
tables (AREA_OF_USE_CODE, ELLIPSOID_CODE and PRIME_MERIDIAN_CODE respectively).
The ellipsoid and prime meridian fields are populated only if the datum type is geodetic.

2.6.7 Ellipsoids
See also GN7-1 section 5.11.4 and 6.4.3

The primary information for ellipsoids is stored within the table Ellipsoid (Access) or epsg_ellipsoid
(SQL). The ellipsoid table includes a UOM_CODE field to cross-reference supporting information
included within the unit of measure table.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 10 of 32

2.6.8 Prime meridians
See also GN7-1 section 6.4.4

The primary information for prime meridians is stored within the table "Prime meridian" (Access) or
epsg_primemeridian (SQL). The Prime meridian table includes a field UOM_CODE to cross-reference
supporting information included within the unit of measure table. See section 5.5 above for comment upon
the unit where the value of GREENWICH_LONGITUDE field is in degrees.

2.7 Coordinate Operations
See also GN7-1 sections 5.11 and 6.5.

The information for all subtypes of coordinate operation (transformation, conversion including map
projection and concatenated operation) is stored in six tables. The primary information for all subtypes is
stored within the table Coordinate_Operation (Access) or epsg_coordoperation (SQL). The field
COORD_OP_TYPE indicates the type of coordinate operation. The coordinate operation table includes
fields to cross-reference supporting information included within the area and coordinate operation method
tables.

The coordinate operation table also includes fields which reference a transformation's source and target
CRSs (SOURCE_CRS_CODE and TARGET_CRS_CODE respectively). Neither of these fields is used
for map projections; for map projections the base CRS information is included within the CRS table.

The coordinate operation table also includes two fields UOM_CODE_SOURCE_COORD_DIFF and
UOM_CODE_TARGET_COORD_DIFF which cross reference to the unit of measure table. These fields
are only used for polynomial transformation methods and indicate the unit in which evaluation point
coordinates are required to be in for application within the method formula. These fields should not be
confused with those that indicate the unit in which parameter values are tabulated, discussed below.

Four additional tables hold supplementary but critical information for single coordinate operations (i.e.
transformations and conversions, including map projections). These are described in section 2.7.1 below.
A further table holds information for concatenated operations.

Scripts to identify the type of coordinate operation from coordinate operation code and to list all
transformations to or from a CRS are given in annex E.1.08 and E.1.09. Scripts for accessing the essential
information for describing a map projection are given in annex E.2.2(ii) and for describing a
transformation in annex E.3.

2.7.1 Transformation and conversion methods and parameters
Each transformation and conversion is related to a coordinate operation method through the coordinate
operation table's COORD_OP_METHOD_CODE field. Primary information for transformation and
conversion methods is held in the table "Coordinate_Operation Method" (Access) or
epsg_coordoperationmethod (SQL).

Information on coordinate operation parameters used by a particular method is held in the intersection
table "Coordinate_Operation Parameter Usage" (Access) or epsg_coordoperationparamusage (SQL).
This table has a dual key of COORD_OP_METHOD_CODE and PARAMETER_CODE. The record for
each combination of method and parameter also includes a field SORT_ORDER.

The name of each parameter, together with a description, is held in the table "Coordinate_Operation
Parameter" (Access) or epsg_coordoperationparam (SQL).

Transformation and conversion parameter values
The values for coordinate operation parameters are held in the intersection table "Coordinate_Operation
Parameter Value" (Access) or epsg_coordoperationparamvalue (SQL). In general these are in the field
PARAMETER_VALUE. The coordinate operation parameter value table includes a field UOM_CODE to
cross-reference supporting information included within the unit of measure table. See GN7-1 section 5.10
for comment upon the unit for angle values given in sexagesimal degree representation.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 11 of 32

Parameter values for methods which use gridded data files
In the relational implementation, for any one record in the parameter value table, either the
PARAMETER_VALUE or the PARAM_VALUE_FILE_REF field, but not both, will be populated.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 12 of 32

ANNEX A - MS ACCESS DATABASE FORMS AND REPORTS

Included within the Access version of the dataset are several forms and reports, underpinned by some
queries and macros. These are for human interaction with the dataset. There are four groups:

• browse forms which allow users to navigate the database forms and reports;
• browse forms which allow users to review individual records by selected topic;
• reports which give to users reports on records by selected topic;
• edit/add forms which allow for maintenance of the dataset content.

Database Forms
There are a total of 31 primary forms in the current version of the database. Within the forms, standard
Access filtering functions can be used to limit a selection whilst standard Access sorting functions can be
used to sort data. See the comments under the reports section below for filtering on the area of use field.
To summarise, the forms provided in this version of the data base are as follows.

• four "Welcome Forms" to assist users in navigating the database's forms and reports.
• a series of twelve forms that allow browsing of specific data types.
• the browse forms offer options to go to a further series of fifteen forms allowing editing and

addition of data.
• supporting the above are numerous subforms that provide integral components for the 31 primary

forms, including one subform for user provision of a Company Logo.
• a form to facilitate the importation into Access of an Oracle script file of the dataset content. This

is described further in Annex C of this document.

Help "Pop-ups" on Database Forms
Pop-up hot-key "help" subforms are currently implemented on all Edit/Add and Browse forms. To utilise
this feature, click on a field caption (e.g., the text "Information Source") and an appropriate help box will
appear. This feature addresses comments on earlier versions to make data entry more intuitive for those
unfamiliar with the database design.

Database "Company Logo" Implementation
There is provision for insertion of a user/company logo on forms and reports. To make use of this facility,
a user should close the opening Welcome Form and open the first form listed, "1 - Company Logo".
Substitute your company logo (sized to fit the subform) for the EPSG dataset logo currently there. Once
this is done, the primary welcome form (and others) will open showing EPSG dataset logo on the left and
your company logo on the right. If your logo is sized larger than the current company logo subform, part
of your logo will be cut off when displayed. The same process should be applied to the first report listed,
"1 - Company Logo".

Database Reports
The 54 reports (28 on valid data plus 26 to review deprecated records) include the ability to search the
database and obtain reports based on user entry.

• Detailed reports based on an input area of use, name, or alias are available for various coordinate
reference systems (geographic, projected, engineering, vertical and compound) and coordinate
operations (map projections, transformations and concatenated operations). In detailed
geographic coordinate reference system reports, most associated datum information is included.

• In addition, summary reports are available for most coordinate reference system types and for
most transformations, with the same search criteria.

• Reports for reference purposes can also be run for all ellipsoids, angle units, length units, scale
units, transformation parameters and prime meridians contained in the database. The report on
transformation methods includes their formulae; these are given with improved clarity due to the
use of multiple fonts in Guidance Note 7 part 2.

• Reports also review the database change requests that have been implemented in this version as
well as any change requests that remain outstanding.

Each "area search" is actually a text search that runs on the area of use, name and code# fields in the
relevant tables or queries, as well as on any associated alias fields in the alias table. Searches can be made
by country name (ISO English spelling) and in the case of the projected coordinate reference system report
in addition by US, Canada or Australia state/province/territory name, US state 2-character postal code
abbreviation, or county name. In all these searches, MS Access requires an exact text string match. The

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 13 of 32

area fields usually contain several country names and/or regional descriptions and a search on one country
name will therefore generally fail. Users are recommended to include their search area text string within
two asterisks as wild-card characters; for example to search for Oman enter *oman*. This will retrieve
all records that include Oman within the area of use or name fields; however it will also retrieve
data for Romania. To produce a report with all possible contents simply enter a single wildcard (*).

Reports are dependent upon printer drivers in use. Users may need to modify printer setup the first time
they use the report feature. For screen viewing, the reports work best at 75 % viewing size (user may set in
MS Access) using large fonts (set in Control Panel/Display).

Database Queries
In the Access database there are a number of queries supporting the above forms and reports.

• sixteen queries are used to provide appropriate inputs for various reports and forms associated
with datums, coordinate reference systems and coordinate operations (map projections,
transformations, and concatenated operations). [Other control queries are incorporated into the
specific reports and forms needing them].

• one make-table query is used to generate new coordinate operation (map projection and
transformation) values in the edit/add coordinate transformation form.

• one query provides latest database version information for input into various form and report
headers.

The Access database also includes five queries for monitoring the length of fields with memo type
declaration (limited to 4000 characters in the SQL export).

The database additionally includes a number of queries to demonstrate automated use of the EPSG dataset.
These are discussed in section 2 and annex E of this document.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 14 of 32

ANNEX B – MS ACCESS USER UPDATE UTILITY

OGP Geodesy Subcommittee makes available a utility for managing updates of version 6.x datasets which
hold additional user data. The utility will copy records which users have added to an earlier EPSG v6.x
Access database from that database into the new EPSGv6.xx database, creating a version of the 6.xx
database supplemented with the user's own records that had been added to v6.x. It is only available for the
Access version of the dataset. This is an executable suite designed by Simon Dewing for the OGP
Geodesy Subcommittee. It must be installed on a user's computer prior to running the utility. The
UpdateEPSG utility for EPSG v6 databases is available for downloading from the EPSG dataset pages of
the OGP web site.

The utility will:

• Expect that all user records have codes outside the EPSG dataset reserved range of 0-32767. This
includes user change records which should have real number codes (Change ID) greater than
32767.0.

• Recognise that users may add user names, user aliases and user abbreviations to EPSG dataet
records, as well as other aliases based on user-defined Naming Systems.

• Expect that all user records have "Data Source" field not equal to "EPSG" or "OGP".
• Prompt for the filenames and paths of input user-extended v6.x EPSG-format database and the

new EPSG database (v6.xx) as well as for the newly created output user-extended database.
• Write a v6.xx-extended output database under the user-selected filename:
• This version of EPSG database in its entirety.
• A copy of records from the input user database v6.x with codes outside the EPSG dataset code

range.
• Copy user abbreviations and user aliases found in the input user database v6.x to the equivalent

records in the output database.
• Write a report listing the number of user records written to each table of the new database.
• The current version of the utility does not copy any user logo subreport or subform to the output

database. They must be added to the output database after running the utility as described
previously.

Code Name UserName etc

xxx xxxxx xxxxx

xxx xxxxx xxxxx
xxx xxxxx xxxxx

EPSG version n

Code Name UserName etc

xxx xxxxx xxxxx

xxx xxxxx xxxxx
xxx xxxxx xxxxx

Xxxxx xxxxx xxxx xxxxx
Xxxxx xxxxx xxxx xxxxx

 xxxx

User version n
(EPSG version n with additional User data)

Code Name UserName etc

xxx xxxxx xxxxx

xxx xxxxx xxxxx
xxx xxxxx xxxxx

xxx xxxxx xxxxx
xxx xxxxx xxxxx

EPSG version n+1

Code Name UserName etc

xxx xxxxx xxxxx

xxx xxxxx xxxxx
xxx xxxxx xxxxx

xxx xxxxx xxxxx
xxx xxxxx xxxxx

xxxxx xxxxx xxxx xxxxx
xxxxx xxxxx xxxx xxxxx

 xxxx

User version n+1
(EPSG version n+1 with additional User

version n data)

Update utility
makes a copy of EPSG version n+1 ….

… strips out additional User data and appends it …

1.

2.

3.

4.
Code Name UserName etc

Xxxxx xxxxx xxxx xxxxx
Xxxxx xxxxx xxxx xxxxx

 xxxx

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 15 of 32

There have been several minor changes in the EPSG database structure since v6.2 was released. The User
Update Utility currently has several known limitations, all of which have simple workarounds. These
relate to:

• Incorrect Code Assignment in three tables with previously Auto Numbering Codes
• Codes table (present in earlier EPSG v6,x dataset releases)
• Extra Fields problem specific to EPSG_v6.9 (as originally posted to website)
• Moving User Records in Version History table

Detailed procedures for workarounds to each of these issues are given in the separate file, epsg-update-
help.pdf, downloadable from the EPSG website along with the epsg-update-exe.zip executable.

Any changes to EPSG dataset records other than the addition of user-assigned names, aliases or
abbreviations will not be resolved by the utility. The utility will not resolve duplications between user data
and new EPSG dataset data.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 16 of 32

ANNEX C – MS ACCESS REGISTRY IMPORT UTILITY

The data release cycle for the EPSG Dataset is described in Guidance Note 7 part 1. In summary, Access
and SQL versions of the Dataset are made available only for full releases, nominally about twice per year.
Between these full releases additional interim releases of the Dataset may be made in the Registry. This
annex describes how users can create Access versions of these interim releases.

Registered Users of the on-line Registry have access to the registry export facility. There are options to
export the dataset as GML or Oracle scripts. From v7.1 (May 2009) the published Access database
includes a facility to import the Oracle script into Access. The steps of the process are:

• Make a copy of the current Access database.
• Delete all EPSG records from this database.
• Download the Oracle script from the Registry.
• Import the Oracle script into the Access database.

Delete EPSG Records
1. Open the copy of the MS Access database;
2. Open the form ‘Import EPSG Oracle SQL’;
3. Click ‘Delete EPSG Records’. This will delete all records (data) from the database, but keeps the
database tables, queries, forms, etc.

Download Oracle script from the on-line Registry
1. Log in to the Registry; (this requires having a registry user account. Prompts to create an account

are given on the Registry home page. Details of how to create an account are given in Guidance
Note 7 part 3.

2. Follow the ‘export registry’ link;
3. Choose the ‘Export Oracle SQL scripts’ link;
4. Save the zip file;
5. Extract ‘Oracle_Data_Script.sql’ to in the same folder as the MSAccess database to be populated.

Import EPSG Oracle SQL
1. Open the MS Access database to be populated;
2. Close the Welcome screen;
3. Open the form ‘Import EPSG Oracle SQL’;
4. Click ‘Import EPSG Oracle SQL’ in the top menu (importing status is displayed in the status bar).

Because of problems experienced by users of Access 2007, we have had to disable the automatic display
of dataset version and data. The version displayed will be that copied at the tart of this process. To see the
actual version of the Dataset, use the Dataset Version History button on the Forms selection screen and
scroll to the last entry.

The displayed version and date can be amended by those confident in using design mode for database
forms and reports. The six that need editing are:

• subform browse Version History MainForms
• subform browse Version History
• subform edit/add Version History
• subrpt footer
• subrpt page header logo
• subrpt report header logo

	

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 17 of 32

ANNEX D

(This page is intentionally left blank)

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 18 of 32

ANNEX E – SQL SCRIPTS FOR EXTRACTING DATA

The sample scripts in this annex are divided into three sections:

E.1. Data discovery – scripts to identify record metadata.
E.2. Coordinate Reference System description.
E.3. Coordinate Transformation description.

The "description" examples also provide the information necessary to execute a geographical to geocentric
coordinate conversion, a geographical to grid coordinate conversion, or a datum transformation. They
return only critical data; no metadata is included.

These simple examples have been constructed to illustrate the dataset content and its extraction. They
should not be taken as fulfilling all extraction requirements, for which more extensive queries utilising
several of the samples may be appropriate. The examples do not trap erroneous input.

The scripts have been tested against a MySQL version 4.0.18 database. Equivalent scripts are also
included within the MS Access database; the Access database query names are given with each example
below. The example results are consistent with the v6.6 dataset of October 2004.

E.1 Data Discovery

Example Function returns Input argument
E.1.00 version and date of a dataset.
E.1.01 name, alias and code. user "name" (name or alias in dataset)
E.1.02 metadata (remarks, information source, data source,

change table record id(s) and revision date).
code

E.1.03 coordinate operation code, name, version and type. area "name" (area of use in dataset)
E.1.04 CRS type. CRS code
E.1.05 CRS type, validity and, if deprecated, the reason for

deprecation and code of replacement (if any).
CRS code

E.1.06 geographic 2D CRS code geocentric or geographic 3D CRS code
E.1.06a tabulation of geographic and geocentric CRSs

referenced to the same geodetic datum.

E.1.07 tabulation of projected CRSs which share datum but
have differing CS.

E.1.08 retrieve Coordinate Operation code and type code for a non-reversible transformation
E.1.09 tabulation of reciprocal non-reversible transformations code for non-reversible transformation
E.1.10 list of transformations and concatenated operations

related to CRS.
CRS code

E.1.00 SQL script to retrieve dataset version and date

(equivalent Access query: qry Version History)

This is done in two steps:

(i) Query to find the latest release date.

SELECT MAX(epsg_versionhistory.version_date) AS 'Date'
FROM epsg_versionhistory;

(ii) Query which uses the date found above to return the dataset's release date and version number.

SELECT epsg_versionhistory.version_date AS 'Date', epsg_versionhistory.version_number AS 'Dataset
Version'
FROM epsg_versionhistory
WHERE (epsg_versionhistory.version_date = 'yyyy-mm-dd');

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 19 of 32

E.1.01 SQL script to retrieve name, alias and code given user "name"
(Access query qry_epsg_gn7_1_e101_nameAlias_crs)

This example uses the coordinate reference system table. Similar scripts can be applied to other primary
tables.

In MySQL, the process is split into two separate queries: (a) for searching for CRS name and (b) for
searching for alias name.

(a). This query is used to search for a match between user "name" and dataset CRS name:

SELECT epsg_coordinatereferencesystem.coord_ref_sys_name, epsg_alias.alias,
epsg_coordinatereferencesystem.coord_ref_sys_code
FROM epsg_coordinatereferencesystem
LEFT JOIN epsg_alias ON (epsg_coordinatereferencesystem.coord_ref_sys_code =
epsg_alias.object_code)
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_name LIKE 'abcd') AND
(epsg_coordinatereferencesystem.deprecated = 0))
ORDER BY epsg_alias.alias;

(b). This query is used to search for match between user "name" and dataset alias:

SELECT epsg_coordinatereferencesystem.coord_ref_sys_name, epsg_alias.alias,
epsg_coordinatereferencesystem.coord_ref_sys_code
FROM epsg_coordinatereferencesystem
INNER JOIN epsg_alias ON epsg_coordinatereferencesystem.coord_ref_sys_code =
epsg_alias.object_code
WHERE (epsg_alias.alias LIKE 'abcd') AND (epsg_alias.object_table_name =
'epsg_coordinatereferencesystem')
ORDER BY epsg_coordinatereferencesystem.coord_ref_sys_name;

Examples:
(i) Input CRS name = "Port Bouet"
CRS name Alias CRS code
Abidjan 1987 Port Bouet 4143
Locodjo 1965 Port Bouet 4142

(ii) Input CRS name = "Abidjan 1987"
CRS name Alias CRS code
Abidjan 1987 Côte D'Ivoire 4143
Abidjan 1987 Port Bouet 4143

(iii) Input CRS name = "ED50"
CRS name Alias CRS code
ED50 (null) 4230
(Note: no alias or CRS ED50 in dataset.)

E.1.02 SQL script to retrieve metadata for a record

(equivalent Access query: qry_epsg_gn7_1_e102_metadata_ellipsoid)

This example uses the ellipsoid table. Similar scripts can be applied to other primary tables in the dataset.

SELECT epsg_ellipsoid.ellipsoid_code, epsg_ellipsoid.remarks, epsg_ellipsoid.information_source,
epsg_ellipsoid.data_source, epsg_ellipsoid.change_id, epsg_ellipsoid.revision_date
FROM epsg_ellipsoid
WHERE ((epsg_ellipsoid.ellipsoid_code = xxxx) AND (epsg_ellipsoid.deprecated = 0));

Example: Input ellipsoid code = 7001
Attribute Value

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 20 of 32

Code: 7001
Remarks: Original definition is a=20923713 and b=20853810 feet of 1796. For the 1936

retriangulation OSGB defines the relationship of feet of 1796 to the International metre
through log(1.48401603) exactly [=0.3048007491...]. 1/f is given to 7 decimal places.

Information source: Ordnance Survey of Great Britain.
Data source: EPSG
Change ID: 98.321 98.34
Revision date: 1995-06-02

E.1.03. SQL script to retrieve coordinate operation code, name, version and type, given area of use

(equivalent Access query: qry_epsg_gn7_1_e103_area_coordOp)

SELECT epsg_coordoperation.coord_op_code, epsg_coordoperation.coord_op_name,
epsg_coordoperation.coord_tfm_version, epsg_coordoperation.coord_op_type
FROM epsg_coordoperation
LEFT JOIN epsg_area ON epsg_coordoperation.area_of_use_code = epsg_area.area_code
WHERE ((epsg_coordoperation.coord_op_type = 'transformation') OR
(epsg_coordoperation.coord_op_type = 'concatenated operation')) AND (epsg_area.area_name = 'abcd')
AND (epsg_coordoperation.deprecated = 0)
ORDER BY epsg_coordoperation.coord_op_variant;

Example: Input area of use = "Algeria"
Code Coordinate Operation Name Version Coordinate Operation Type
1253 Nord Sahara 1959 to WGS 84 (1) DMA-Alg transformation
1882 Nord Sahara 1959 (Paris) to Nord Sahara 1959 IGN-Fra transformation
8640 Nord Sahara 1959 (Paris) to WGS 84 (1) EPSG-Dza concatenated operation

E.1.04. SQL script to retrieve CRS type, given CRS code

(equivalent Access query: qry_epsg_gn7_1_e104_crs_findType)

SELECT epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_kind
FROM epsg_coordinatereferencesystem
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND
(epsg_coordinatereferencesystem.deprecated = 0));

Examples:
 CRS code CRS type
(i) Input CRS code = 7405 7405 compound
(ii) Input CRS code = 2105 2105 projected

E.1.05. SQL scripts to retrieve CRS status, given CRS code

(equivalent Access queries: qry_epsg_gn7_1_e105a_crs_deprecation and
qry_epsg_gn7_1_e105_crs_findStatus)

This search returns CRS type, validity and if deprecated the reason for deprecation and code of
replacement record (if any). (In Access it is run in two parts. The first finds all CRS records in the
Deprecation table. These results are used by the second part).

SELECT epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_kind, epsg_coordinatereferencesystem.deprecated,
epsg_deprecation.replaced_by, epsg_deprecation.deprecation_reason
FROM epsg_coordinatereferencesystem
LEFT JOIN epsg_deprecation ON epsg_coordinatereferencesystem.coord_ref_sys_code =
epsg_deprecation.object_code

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 21 of 32

WHERE (epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx);

Examples:
Attribute (i) Input CRS code = 4977 (ii) Input CRS code = 2141
CRS code: 4977 2141
CRS type: geographic 3D projected
Deprecated?: 0 1
Replaced by (code): (null) 2946
Deprecation reason: (null) Change of base geogCRS name to accord with revised

Geomatics Canada practice.
Note: The record is valid if deprecated = "No" or "False" or "0".

E.1.06. SQL script to retrieve geographic 2D CRS code, given geocentric CRS or geographic 3D CRS
code

(equivalent Access query: qry_epsg_gn7_1_e106_geocen2geog2D)

SELECT epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_kind,
epsg_coordinatereferencesystem_1.coord_ref_sys_code,
epsg_coordinatereferencesystem_1.coord_ref_sys_kind,
epsg_coordinatereferencesystem.coord_ref_sys_name
FROM epsg_coordinatereferencesystem AS epsg_coordinatereferencesystem_1
INNER JOIN epsg_coordinatereferencesystem
ON epsg_coordinatereferencesystem_1.datum_code = epsg_coordinatereferencesystem.datum_code
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx)
AND ((epsg_coordinatereferencesystem.coord_ref_sys_kind = 'geocentric')
OR (epsg_coordinatereferencesystem.coord_ref_sys_kind = 'geographic 3D'))
AND (epsg_coordinatereferencesystem_1.coord_ref_sys_kind = 'geographic 2D')
AND (epsg_coordinatereferencesystem.deprecated = 0)
AND epsg_coordinatereferencesystem_1.deprecated = 0);

Examples:
Input CRS code CRS type Related geog2D CRS code Geog2D CRS type Geog2D CRS name
4976 geocentric 4619 geographic 2D SWEREF99
4978 geocentric 4326 geographic 2D WGS 84
4979 geographic 3D 4326 geographic 2D WGS 84

E.1.06a. SQL script to tabulate geographic and geocentric CRSs referenced to the same geodetic datum

(equivalent Access query: qry_epsg_gn7_1_e106a_tabulation_geocrs)

This script provides similar information to the previous example but rather than returning information for
a specific input it tabulates all dataset content.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 22 of 32

SELECT epsg_datum.datum_name, epsg_coordinatereferencesystem.coord_ref_sys_name,
epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_kind,
epsg_coordinatereferencesystem_1.coord_ref_sys_code,
epsg_coordinatereferencesystem_1.coord_ref_sys_kind,
epsg_coordinatereferencesystem_2.coord_ref_sys_code,
epsg_coordinatereferencesystem_2.coord_ref_sys_kind
FROM ((epsg_coordinatereferencesystem
INNER JOIN epsg_coordinatereferencesystem AS epsg_coordinatereferencesystem_1 ON
epsg_coordinatereferencesystem.datum_code = epsg_coordinatereferencesystem_1.datum_code)
INNER JOIN epsg_coordinatereferencesystem AS epsg_coordinatereferencesystem_2 ON
epsg_coordinatereferencesystem.datum_code = epsg_coordinatereferencesystem_2.datum_code)
INNER JOIN epsg_datum ON (epsg_datum.datum_code = epsg_coordinatereferencesystem.datum_code)
AND (epsg_coordinatereferencesystem_1.datum_code = epsg_datum.datum_code)
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_kind = 'geocentric') AND
(epsg_coordinatereferencesystem_1.coord_ref_sys_kind = 'geographic 3D') AND
(epsg_coordinatereferencesystem_2.coord_ref_sys_kind = 'geographic 2D') AND
(epsg_coordinatereferencesystem.deprecated = 0) AND (epsg_coordinatereferencesystem_1.deprecated =
0) AND (epsg_coordinatereferencesystem_2.deprecated = 0))
ORDER BY epsg_datum.datum_name;

E.1.07. SQL script to tabulate projected CRSs which share datum but have differing CS

(equivalent Access query: qry_epsg_gn7_1_e107_tabulation_projcrsCSchange)

SELECT epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_name, epsg_coordinatesystem.coord_sys_name,
epsg_coordinatereferencesystem_1.coord_ref_sys_code,
epsg_coordinatereferencesystem_1.coord_ref_sys_name, epsg_coordinatesystem_1.coord_sys_name
FROM epsg_coordinatesystem
INNER JOIN (epsg_coordinatesystem AS epsg_coordinatesystem_1
INNER JOIN (epsg_coordinatereferencesystem
INNER JOIN epsg_coordinatereferencesystem AS epsg_coordinatereferencesystem_1
ON (epsg_coordinatereferencesystem.projection_conv_code =
epsg_coordinatereferencesystem_1.projection_conv_code)
AND (epsg_coordinatereferencesystem.source_geogcrs_code =
epsg_coordinatereferencesystem_1.source_geogcrs_code)) ON epsg_coordinatesystem_1.coord_sys_code
= epsg_coordinatereferencesystem_1.coord_sys_code)
ON epsg_coordinatesystem.coord_sys_code = epsg_coordinatereferencesystem.coord_sys_code
WHERE ((epsg_coordinatereferencesystem.deprecated = 0)
AND (epsg_coordinatereferencesystem_1.deprecated = 0)
AND ((epsg_coordinatereferencesystem_1.coord_sys_code) <>
(epsg_coordinatereferencesystem.coord_sys_code)))
ORDER BY epsg_coordinatereferencesystem.coord_ref_sys_code;

E.1.08. SQL script to retrieve Coordinate Operation type, given Coordinate Operation code

(equivalent Access query: qry_epsg_gn7_1_e108_coordOp_findType)

SELECT epsg_coordoperation.coord_op_code, epsg_coordoperation.coord_op_type
FROM epsg_coordoperation
WHERE ((epsg_coordoperation.coord_op_code = xxxx) AND (epsg_coordoperation.deprecated = 0));

Examples:
 Coordinate Operation code Coordinate Operation type
(i) Input code = 1301 1301 transformation
(ii) Input code = 10301 10301 conversion

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 23 of 32

E.1.09. SQL script to retrieve CRS code for a reciprocal transformation, given CRS code for a non-

reversible transformation

SELECT epsg_coordoperation.coord_op_code, epsg_coordoperation.coord_op_name,
epsg_coordoperation_2.coord_op_code, epsg_coordoperation_2.coord_op_name
FROM epsg_coordoperation
INNER JOIN epsg_coordoperation AS epsg_coordoperation_2
ON (epsg_coordoperation.coord_op_method_code = epsg_coordoperation_2.coord_op_method_code)
AND (epsg_coordoperation.source_crs_code = epsg_coordoperation_2.target_crs_code)
AND (epsg_coordoperation.target_crs_code = epsg_coordoperation_2.source_crs_code)
AND (epsg_coordoperation.coord_tfm_version = epsg_coordoperation_2.coord_tfm_version)
WHERE ((epsg_coordoperation.coord_op_code = xxxx) AND (epsg_coordoperation_2.deprecated = 0));

Examples: Using coordinate operation code 1044 as the input argument should return coordinate
operation code 1045. Note that not all transformations using non-reversible methods will have a
reciprocal. The above SQL query using coordinate operation code 1028 as the input argument will not
return anything.

(Similar Access query of all which tabulates results:
qry_epsg_gn7_1_e109_tabulation_reciprocalOperation).

E.1.10. SQL script to retrieve data describing available coordinate transformations and concatenated

operations, given CRS code
(equivalent Access query: qry_epsg_gn7_1_e110_tfmStatusByCRS)

SELECT epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem_1.coord_ref_sys_code, epsg_coordoperation.coord_op_code,
epsg_coordoperation.coord_op_name, epsg_coordoperation.coord_tfm_version,
epsg_coordoperation.coord_op_type,
epsg_coordoperationmethod.coord_op_method_name, epsg_coordoperationmethod.reverse_op,
epsg_coordoperation.coord_op_accuracy,
epsg_area.area_north_bound_lat, epsg_area.area_south_bound_lat, epsg_area.area_east_bound_lon,
epsg_area.area_west_bound_lon, epsg_supersession.superseded_by,
epsg_coordoperation_1.coord_op_name, epsg_coordoperation_1.coord_tfm_version
FROM epsg_coordinatereferencesystem, epsg_coordinatereferencesystem AS
epsg_coordinatereferencesystem_1
INNER JOIN epsg_coordoperation ON ((epsg_coordinatereferencesystem.coord_ref_sys_code =
epsg_coordoperation.source_crs_code) AND (epsg_coordinatereferencesystem_1.coord_ref_sys_code =
epsg_coordoperation.target_crs_code))
INNER JOIN epsg_coordoperationmethod ON (epsg_coordoperation.coord_op_method_code =
epsg_coordoperationmethod.coord_op_method_code)
INNER JOIN epsg_area ON (epsg_coordoperation.area_of_use_code = epsg_area.area_code)
LEFT JOIN epsg_supersession ON ((epsg_supersession.object_table_name = 'epsg_coordoperation') AND
(epsg_coordoperation.coord_op_code = epsg_supersession.object_code))
LEFT JOIN epsg_coordoperation AS epsg_coordoperation_1 ON (epsg_coordoperation_1.coord_op_code
= epsg_supersession.superseded_by)
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND
(epsg_coordoperation.deprecated = 0))
ORDER BY epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem_1.coord_ref_sys_code;

Example: Input CRS code = 4289
 Transformation #1 Transformation #2 Transformation #3 Transformation #4
Source CRS code: 4289 4289 4289 4289
Target CRS code: 4258 4258 4326 4326

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 24 of 32

Example: Input CRS code = 4289
 Transformation #1 Transformation #2 Transformation #3 Transformation #4
Coord Operation Code: 1751 1066 1112 1672
Coord Operation Name: Amersfoort to

ETRS89 (1)
Amersfoort to
ETRS89 (2)

Amersfoort to WGS
84 (1)

Amersfoort to WGS
84 (2)

Coord Tfm Version: NCG-Nld 2000 NCG-Nld 2000 NCG-Nld 93 EPSG-Nld
Coord Operation Type: transformation transformation transformation transformation
Coord Op Method: Coordinate Frame

rotation
Molodensky-
Badekas 10-
parameter
transformation

Position Vector 7-
param.
transformation

Coordinate Frame
rotation

Reverse Op? TRUE (or 1) TRUE (or 1) TRUE (or 1) TRUE (or 1)
Coord Tfm Accuracy: 0.5 0.5 1 1
North latitude: 53.47 53.47 53.47 53.47
South latitude: 50.75 50.75 50.75 50.75
East longitude: 7.21 7.21 7.21 7.21
West longitude: 3.37 3.37 3.37 3.37
Succeeded by code: (null) (null) 1672 (null)
Coord Operation name: (null) (null) Amersfoort to WGS

84 (2)
(null)

Coord Tfm Version: (null) (null) EPSG-Nld (null)

E.2 CRS Description

This section exemplifies scripts to return the geodetic parameters essential to describing various types of
coordinate reference system. These scripts also return all data required to perform geocentric to/from
geographical and geographical to/from grid conversions.

To select the appropriate script it is first necessary to know the type of CRS. (See example 1.04 above to
determine CRS type from CRS code, and example 1.01 above to determine CRS code from text search on
(any part of) CRS name). Then if the CRS type is not compound, run example script 2.1, 2.2 or 2.3 as
appropriate for the CRS type followed by example 2.4. If the CRS type is compound first run example
script 2.5 to determine the codes and types for the component CRSs, then run 2.1, 2.2 or 2.3 as appropriate
and then 2.4 for each of the two component CRSs.

Example Function returns Input argument
E.2.1 geodetic data describing a geographic or geocentric CRS. CRS code
E.2.2 geodetic data describing a projected CRS. CRS code
E.2.3 geodetic data describing a vertical or engineering CRS. CRS code
E.2.4 data describing a coordinate system (CS) for any single CRS. CRS code
E.2.5 names and codes of CRSs forming a compound CRS compound CRS code

E.2.1. SQL script to retrieve geodetic parameters describing a geographic or geocentric CRS, given CRS
code

(equivalent Access query: qry_epsg_gn7_1_e21_crsID_geo)

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 25 of 32

SELECT epsg_coordinatereferencesystem.coord_ref_sys_code, SELECT
epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_name,
epsg_coordinatereferencesystem.coord_ref_sys_kind, epsg_datum.datum_name,
ell.ellipsoid_name, ell.semi_major_axis, epsg_unitofmeasure.unit_of_meas_name,
IF (ell.inv_flattening>0, ell.inv_flattening, IF ((ell.semi_major_axis - ell.semi_minor_axis) = 0, '',
(ell.semi_major_axis/(ell.semi_major_axis - ell.semi_minor_axis)))) AS '1/f',
IF (epsg_primemeridian.prime_meridian_name LIKE 'Greenwich', '',
epsg_primemeridian.prime_meridian_name) AS 'Non-Greenwich_Prime_Meridian',
IF (epsg_primemeridian.prime_meridian_name LIKE 'Greenwich', '',
epsg_primemeridian.greenwich_longitude) AS 'PM_Greenwich_Longitude',
IF (epsg_primemeridian.prime_meridian_name LIKE 'Greenwich', '',
epsg_unitofmeasure_1.unit_of_meas_name) AS 'PM_LongitudeUnit'
FROM epsg_unitofmeasure AS epsg_unitofmeasure_1
INNER JOIN (epsg_primemeridian
INNER JOIN (epsg_unitofmeasure
INNER JOIN epsg_ellipsoid AS ell ON epsg_unitofmeasure.uom_code = ell.uom_code
INNER JOIN (epsg_datum
INNER JOIN epsg_coordinatereferencesystem ON epsg_datum.datum_code =
epsg_coordinatereferencesystem.datum_code) ON ell.ellipsoid_code = epsg_datum.ellipsoid_code)
ON epsg_primemeridian.prime_meridian_code = epsg_datum.prime_meridian_code) ON
epsg_unitofmeasure_1.uom_code = epsg_primemeridian.uom_code
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND
(epsg_coordinatereferencesystem.coord_ref_sys_kind LIKE 'geo%') AND
(epsg_coordinatereferencesystem.deprecated = 0))
ORDER BY epsg_coordinatereferencesystem.coord_ref_sys_name;

Notes: 1. If ellipsoid inverse flattening is included in the dataset it is used, else it is calculated from the

semi-major and semi-minor axes.
2. Prime meridian details are shown only for CRS's using a prime meridian other than Greenwich.
3. See example E.2.4 for script to retrieve coordinate axis information.

Examples: (i) Input CRS code = 4230 (ii) Input CRS code = 4807
Attribute
CRS name: ED50 NTF (Paris)
CRS type: geographic 2D geographic 2D
Datum name: European Datum 1950 Nouvelle Triangulation Francaise (Paris)
Ellipsoid name: International 1924 Clarke 1880 (IGN)
Semi-major axis: 6378388 6378249.2
Ellipsoid unit name: metre metre
1/f: 297 293.4660213
Prime meridian name: (null) Paris
Prime meridian Greenwich longitude: (null) 2.5969213
Prime meridian longitude unit: (null) grad

All of the data necessary for geographical to/from geocentric coordinate conversions are retrived within
the above script.

E.2.2. SQL script to retrieve geodetic parameters describing a projected CRS, given CRS code

(Access queries qry_epsg_gn7_1_e22a_crsID_proj and qry_epsg_gn7_1_e22b_crsID_projParam)

This is done in two steps:

(i) All information except for map projection parameter data is obtained from:

(equivalent Access query: qry_epsg_gn7_1_e22a_crsID_proj)

SELECT DISTINCT epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_name,
epsg_coordinatereferencesystem.coord_ref_sys_kind,

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 26 of 32

epsg_coordinatereferencesystem.source_geogcrs_code,
epsg_coordinatereferencesystem_1.coord_ref_sys_name, epsg_datum.datum_name,
epsg_ellipsoid.ellipsoid_name,
epsg_ellipsoid.semi_major_axis * (epsg_unitofmeasure.factor_b * epsg_unitofmeasure_1.factor_c) /
(epsg_unitofmeasure.factor_c * epsg_unitofmeasure_1.factor_b) AS 'sma in CS unit',
epsg_unitofmeasure_1.unit_of_meas_name,
IF (epsg_ellipsoid.inv_flattening>0, epsg_ellipsoid.inv_flattening, IF ((epsg_ellipsoid.semi_major_axis -
epsg_ellipsoid.semi_minor_axis) = 0, '',
(epsg_ellipsoid.semi_major_axis/(epsg_ellipsoid.semi_major_axis - epsg_ellipsoid.semi_minor_axis))))
AS '1/f',
IF (epsg_primemeridian.prime_meridian_name LIKE 'Greenwich', '', prime_meridian_name) AS 'Non-
Greenwich_Prime_Meridian',
IF (epsg_primemeridian.prime_meridian_name LIKE 'Greenwich', '', greenwich_longitude) AS
'PM_Greenwich_Longitude',
IF (epsg_primemeridian.prime_meridian_name LIKE 'Greenwich', '',
epsg_unitofmeasure_2.unit_of_meas_name) AS 'PM_LongitudeUnit',
epsg_coordoperationmethod.coord_op_method_name
FROM epsg_coordinatereferencesystem
LEFT JOIN epsg_coordinatereferencesystem AS epsg_coordinatereferencesystem_1 ON
(epsg_coordinatereferencesystem.source_geogcrs_code =
epsg_coordinatereferencesystem_1.coord_ref_sys_code)
LEFT JOIN epsg_datum ON (epsg_coordinatereferencesystem_1.datum_code = epsg_datum.datum_code)
LEFT JOIN epsg_ellipsoid ON (epsg_datum.ellipsoid_code = epsg_ellipsoid.ellipsoid_code)
LEFT JOIN epsg_unitofmeasure ON (epsg_ellipsoid.uom_code = epsg_unitofmeasure.uom_code)
LEFT JOIN epsg_datum AS epsg_datum_1 ON (epsg_ellipsoid.ellipsoid_code =
epsg_datum_1.ellipsoid_code)
LEFT JOIN epsg_coordinateaxis ON (epsg_coordinatereferencesystem.coord_sys_code =
epsg_coordinateaxis.coord_sys_code)
LEFT JOIN epsg_unitofmeasure AS epsg_unitofmeasure_1 ON (epsg_coordinateaxis.uom_code =
epsg_unitofmeasure_1.uom_code)
LEFT JOIN epsg_primemeridian ON (epsg_datum.prime_meridian_code =
epsg_primemeridian.prime_meridian_code)
LEFT JOIN epsg_unitofmeasure AS epsg_unitofmeasure_2 ON (epsg_primemeridian.uom_code =
epsg_unitofmeasure_2.uom_code)
LEFT JOIN epsg_coordoperation ON (epsg_coordinatereferencesystem.projection_conv_code =
epsg_coordoperation.coord_op_code)
LEFT JOIN epsg_coordoperationmethod ON (epsg_coordoperation.coord_op_method_code =
epsg_coordoperationmethod.coord_op_method_code)
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND
(epsg_coordinatereferencesystem.coord_ref_sys_kind = 'projected') AND
(epsg_coordinatereferencesystem.deprecated = 0))
ORDER BY epsg_coordinatereferencesystem_1.coord_ref_sys_name;

Notes:

1. Ellipsoid semi-major axis is converted to CS units.
2. If ellipsoid inverse flattening is included in the dataset it is used, else it is calculated from the

semi-major and semi-minor axes.
3. If the map projection uses spherical (as opposed to ellipsoidal) formulae, ellipsoid inverse

flattening is not shown.
4. Prime meridian details are shown only for base geographic CRS's using a prime meridian other

than Greenwich.
5. See example E.2.4 for script to retrieve coordinate axis information.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 27 of 32

Examples: Input CRS code
Attribute (i) 23031 (ii) 32040 (iii) 27572
CRS name: ED50 / UTM zone 31N NAD27 / Texas

South Central
NTF (Paris) /
Lambert zone II

CRS type: projected Projected projected
Base geogCRS name: 4230 4267 4807
Base geogCRS name: ED50 NAD27 NTF (Paris)
Datum name: European Datum 1950 North American

Datum 1927
Nouvelle
Triangulation
Francaise (Paris)

Ellipsoid name: International 1924 Clarke 1866 Clarke 1880 (IGN)
Semi-major axis (in CS units): 6378388 20925832.164 6378249.2
Ellipsoid unit name: metre US survey foot metre
1/f: 297 294.9786982 293.4660213
Prime meridian name: (null) (null) Paris
Prime meridian Greenwich longitude: (null) (null) 2.5969213
Prime meridian longitude unit: (null) (null) grad
Coordinate Operation method name: Transverse Mercator Lambert Conic

Conformal (2SP)
Lambert Conic
Conformal (1SP)

(ii) Then the map projection parameter names and values are obtained from:

(equivalent Access query: qry_epsg_gn7_1_e22b_crsID_projParam)

SELECT epsg_coordoperationparam.parameter_name, epsg_coordoperationparamvalue.parameter_value,
epsg_unitofmeasure.unit_of_meas_name
FROM epsg_coordoperationparam
INNER JOIN epsg_coordoperationparamusage ON (epsg_coordoperationparam.parameter_code =
epsg_coordoperationparamusage.parameter_code)
INNER JOIN epsg_coordoperationmethod ON (epsg_coordoperationparamusage.coord_op_method_code
= epsg_coordoperationmethod.coord_op_method_code)
INNER JOIN epsg_coordoperation ON (epsg_coordoperationmethod.coord_op_method_code =
epsg_coordoperation.coord_op_method_code)
INNER JOIN epsg_coordinatereferencesystem ON (epsg_coordoperation.coord_op_code =
epsg_coordinatereferencesystem.projection_conv_code)
INNER JOIN epsg_coordoperationparamvalue ON ((epsg_coordoperation.coord_op_code =
epsg_coordoperationparamvalue.coord_op_code)
AND (epsg_coordoperationmethod.coord_op_method_code =
epsg_coordoperationparamvalue.coord_op_method_code)
AND (epsg_coordoperationparam.parameter_code = epsg_coordoperationparamvalue.parameter_code))
INNER JOIN epsg_unitofmeasure ON (epsg_coordoperationparamvalue.uom_code =
epsg_unitofmeasure.uom_code)
WHERE (epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx)
ORDER BY epsg_coordoperationparamusage.sort_order;

Examples:
(i) Input CRS code = 23031 (ii) Input CRS code = 32040
Parameter name Parameter

value
Unit Parameter name Parameter

value
Parameter value
unit

Latitude of natural origin 0 degree Latitude of false origin 27.5 sexagesimal DMS
Longitude of natural origin 3 degree Longitude of false origin -99 sexagesimal DMS
Scale factor at natural origin 0.9996 unity Latitude of 1st standard

parallel
28.23 sexagesimal DMS

False easting 500000 metre Latitude of 2nd standard
parallel

30.17 sexagesimal DMS

False northing 0 metre Easting at false origin 2000000 US survey foot
 Northing at false origin 0 US survey foot

Note the similarity between this script and that given in example E.3.1(ii) below.

All of the data necessary for geographic to/from grid (i.e. projected) coordinate conversions are retrieved
within the above two scripts E2.2a and E2.2b.

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 28 of 32

E.2.3. SQL script to retrieve geodetic parameters describing a vertical or engineering CRS, given CRS
code

(equivalent Access query: qry_epsg_gn7_1_e23_crsID_VertOrEng)

SELECT epsg_coordinatereferencesystem.coord_ref_sys_name,
epsg_coordinatereferencesystem.coord_ref_sys_kind, epsg_datum.datum_name
FROM epsg_datum
INNER JOIN epsg_coordinatereferencesystem
ON epsg_datum.datum_code = epsg_coordinatereferencesystem.datum_code
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND
(epsg_coordinatereferencesystem.coord_ref_sys_kind = 'vertical') AND
(epsg_coordinatereferencesystem.deprecated = 0))
ORDER BY epsg_coordinatereferencesystem.coord_ref_sys_name;

Notes:

1. For engineering CRSs, replace vertical with engineering.
2. See example E.2.4 for script to retrieve coordinate axis information.

Example: Input CRS code = 5783
CRS name CRS type Datum name
DHHN92 vertical Deutches Haupthohennetz 1992

E.2.4. SQL script to retrieve data describing a coordinate system (CS), given CRS code

(equivalent Access query: qry_epsg_gn7_1_e24_crsID_singleCSaxes)

This script is used in conjunction with each of the three examples E.2.1 through E.2.3 above.

SELECT epsg_coordinateaxisname.coord_axis_name, epsg_coordinateaxis.coord_axis_abbreviation,
epsg_coordinateaxis.coord_axis_orientation, epsg_unitofmeasure.unit_of_meas_name
FROM epsg_coordinateaxis
INNER JOIN epsg_coordinatesystem ON (epsg_coordinateaxis.coord_sys_code =
epsg_coordinatesystem.coord_sys_code)
INNER JOIN epsg_coordinatereferencesystem ON (epsg_coordinatesystem.coord_sys_code =
epsg_coordinatereferencesystem.coord_sys_code)
LEFT JOIN epsg_coordinateaxisname ON (epsg_coordinateaxis.coord_axis_name_code =
epsg_coordinateaxisname.coord_axis_name_code)
LEFT JOIN epsg_unitofmeasure ON (epsg_coordinateaxis.uom_code = epsg_unitofmeasure.uom_code)
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND
(epsg_coordinatesystem.deprecated = 0))
ORDER BY epsg_coordinateaxis.coord_axis_order;

Example: Input CRS code = 4979
Axis name Axis abbreviation Axis orientation Axis unit
Geodetic latitude Lat north degree (supplier to define representation)
Geodetic longitude Long east degree (supplier to define representation)
Ellipsoidal height h up metre

E.2.5. SQL script to retrieve names, codes and types of CRSs forming a compound CRS, given compound

CRS code
(equivalent Access query: qry_epsg_gn7_1_e25_crsID_compound)

SELECT epsg_coordinatereferencesystem.coord_ref_sys_code,
epsg_coordinatereferencesystem.coord_ref_sys_name,
epsg_coordinatereferencesystem.coord_ref_sys_kind,
epsg_coordinatereferencesystem.cmpd_horizcrs_code,
epsg_coordinatereferencesystem_1.coord_ref_sys_name,

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 29 of 32

epsg_coordinatereferencesystem_1.coord_ref_sys_kind,
epsg_coordinatereferencesystem.cmpd_vertcrs_code,
epsg_coordinatereferencesystem_2.coord_ref_sys_name,
epsg_coordinatereferencesystem_2.coord_ref_sys_kind
FROM epsg_coordinatereferencesystem
LEFT JOIN epsg_coordinatereferencesystem AS epsg_coordinatereferencesystem_1 ON
epsg_coordinatereferencesystem.cmpd_horizcrs_code =
epsg_coordinatereferencesystem_1.coord_ref_sys_code
LEFT JOIN epsg_coordinatereferencesystem AS epsg_coordinatereferencesystem_2 ON
epsg_coordinatereferencesystem.cmpd_vertcrs_code =
epsg_coordinatereferencesystem_2.coord_ref_sys_code
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND
(epsg_coordinatereferencesystem.coord_ref_sys_kind = 'compound') AND
(epsg_coordinatereferencesystem.deprecated = 0))
ORDER BY epsg_coordinatereferencesystem.coord_ref_sys_name;

Example: Input CRS code = 7404
Attribute Value
Compound CRS name: RT90 + RH70
CRS type: compound
Horizontal CRS code: 4124
Horizontal CRS name: RT90
Horizontal CRS type: geographic 2D
Vertical CRS code: 5718
Vertical CRS name: RH70
Vertical CRS type: vertical

The details for each of the two component single CRSs may then be found by using the SQL queries in the
previous examples E.2.1 through E2.3 (as appropriate for each single CRS type) and E.2.4 (twice, once for
each of the two single systems).

E.3 Coordinate Transformation Description

Example Function returns Input argument
E.3.1 geodetic data describing a transformation. Coordinate operation code
E.3.2 ellipsoid parameters. CRS code
E.3.3 names and codes of transformations forming a concatenated operation. Concatenated operation code

E.3.1. SQL script to retrieve geodetic parameters describing a transformation, given coordinate operation
code

(equivalent Access queries: qry_epsg_gn7_1_e31a_tfmID and
qry_epsg_gn7_1_e31b_tfmID_tfmParam)

This is done in two or more steps:

(i) All general information except for transformation parameter data is obtained from:

(equivalent Access query: qry_epsg_gn7_1_e31a_tfmID)

SELECT epsg_coordoperation.coord_op_code, epsg_coordoperation.coord_op_name,
epsg_coordoperation.coord_op_type, epsg_coordoperation.source_crs_code,
epsg_coordoperation.target_crs_code,
epsg_coordoperation.coord_op_variant, epsg_coordoperation.coord_tfm_version,
epsg_area.area_north_bound_lat, epsg_area.area_south_bound_lat, epsg_area.area_east_bound_lon,
epsg_area.area_west_bound_lon,
epsg_coordoperation.coord_op_accuracy, epsg_coordoperationmethod.coord_op_method_name,
epsg_unitofmeasure.unit_of_meas_name, epsg_unitofmeasure_1.unit_of_meas_name
FROM epsg_coordoperation
LEFT JOIN epsg_area ON (epsg_coordoperation.area_of_use_code = epsg_area.area_code)

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 30 of 32

LEFT JOIN epsg_coordoperationmethod ON (epsg_coordoperation.coord_op_method_code =
epsg_coordoperationmethod.coord_op_method_code)
LEFT JOIN epsg_unitofmeasure ON (epsg_coordoperation.uom_code_source_coord_diff =
epsg_unitofmeasure.uom_code)
LEFT JOIN epsg_unitofmeasure AS epsg_unitofmeasure_1 ON
(epsg_coordoperation.uom_code_target_coord_diff = epsg_unitofmeasure_1.uom_code)
WHERE ((epsg_coordoperation.coord_op_code = xxxx) AND (epsg_coordoperation.coord_op_type =
'transformation') AND (epsg_coordoperation.deprecated = 0));

Examples: Input Coord Op code =
Attribute (i) 1086 (ii) 1048
Coord Operation name: JAD69 to WGS 84 (3) Belge 72 / Lambert to ED50 / UTM zone

31N (1)
Coord Operation type: transformation transformation
Source CRS code: 4242 31300
Target CRS code: 4326 23031
Coordinate transformation variant: 3 1
Coordinate transformation version: UT-Jam 1m NCG-Bel
Geog bounding box north latitude: 19.42 51.83
Geog bounding box south latitude: 14.63 49.53
Geog bounding box right longitude: -74.38 6.4
Geog bounding box left longitude: -80.74 2.12
Coordinate transformation accuracy: 1 1
Coordinate Operation method name: Coordinate Frame rotation Complex polynomial of degree 3
Polynomial source CRS offset UoM (null) metre
Polynomial target CRS offset UoM (null) metre

(ii) Then the transformation parameter names and values are obtained from:

(equivalent Access query: qry_epsg_gn7_1_e31b_tfmID_tfmParam)

SELECT epsg_coordoperationparam.parameter_name, epsg_coordoperationparamvalue.parameter_value,
epsg_unitofmeasure.unit_of_meas_name, epsg_coordoperationparamvalue.param_value_file_ref
FROM epsg_coordoperationparam
INNER JOIN epsg_coordoperationparamusage ON (epsg_coordoperationparam.parameter_code =
epsg_coordoperationparamusage.parameter_code)
INNER JOIN epsg_coordoperationmethod ON (epsg_coordoperationparamusage.coord_op_method_code
= epsg_coordoperationmethod.coord_op_method_code)
INNER JOIN epsg_coordoperation ON (epsg_coordoperationmethod.coord_op_method_code =
epsg_coordoperation.coord_op_method_code)
LEFT JOIN epsg_coordoperationparamvalue ON ((epsg_coordoperation.coord_op_code =
epsg_coordoperationparamvalue.coord_op_code)
AND (epsg_coordoperationmethod.coord_op_method_code =
epsg_coordoperationparamvalue.coord_op_method_code)
AND (epsg_coordoperationparam.parameter_code = epsg_coordoperationparamvalue.parameter_code))
LEFT JOIN epsg_unitofmeasure ON (epsg_coordoperationparamvalue.uom_code =
epsg_unitofmeasure.uom_code)
WHERE (epsg_coordoperation.coord_op_code = xxxx)
ORDER BY epsg_coordoperationparamusage.sort_order;

Examples:
(i) Input Coordinate Operation code = 1086
Parameter name Parameter value Unit Parameter file name
X-axis translation -33.722 metre (null)
Y-axis translation 153.789 metre (null)
Z-axis translation 94.959 metre (null)
X-axis rotation 8.581 arc-second (null)
Y-axis rotation 4.478 arc-second (null)
Z-axis rotation -4.54 arc-second (null)
Scale difference -8.95 parts per million (null)

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 31 of 32

(ii) Input Coordinate Operation code = 1241
Parameter name Parameter value Unit Parameter file name
Latitude difference file (null) (null) ftp://ftp.ngs.noaa.gov/pub/pcsoft/nadcon/conus.las
Longitude difference file (null) (null) ftp://ftp.ngs.noaa.gov/pub/pcsoft/nadcon/conus.los

(iii) Some transformation method formulae require ellipsoid parameters related to the transformation's
source and target CRSs. These may be obtained through two applications of the script in E.3.2 below, the
argument for which is the CRS code for the source or target CRS, as appropriate. The CRS codes for the
source and target CRSs are returned from qry_epsg_gn7_1_e31a_tfmID above.

E.3.2. SQL script to retrieve ellipsoid parameters, given CRS code

(Equivalent Access query qry_epsg_gn7_1_e32_ellipsoidParam)

SELECT DISTINCT epsg_ellipsoid.ellipsoid_name, epsg_ellipsoid.semi_major_axis,
epsg_unitofmeasure.unit_of_meas_name,
IF (epsg_ellipsoid.inv_flattening>0, epsg_ellipsoid.inv_flattening, IF ((epsg_ellipsoid.semi_major_axis -
epsg_ellipsoid.semi_minor_axis) = 0, '',
(epsg_ellipsoid.semi_major_axis/(epsg_ellipsoid.semi_major_axis - epsg_ellipsoid.semi_minor_axis))))
AS '1/f'
FROM epsg_ellipsoid
INNER JOIN epsg_datum ON (epsg_ellipsoid.ellipsoid_code = epsg_datum.ellipsoid_code)
INNER JOIN epsg_coordinatereferencesystem ON (epsg_datum.datum_code =
epsg_coordinatereferencesystem.datum_code)
LEFT JOIN epsg_unitofmeasure ON (epsg_ellipsoid.uom_code = epsg_unitofmeasure.uom_code)
WHERE ((epsg_coordinatereferencesystem.coord_ref_sys_code = xxxx) AND (epsg_ellipsoid.deprecated
= 0))
ORDER BY epsg_ellipsoid.ellipsoid_name;

Examples:
Input CRS code Ellipsoid name Semi-major axis (a) Unit Inverse flattening (1/f)
4314 Bessel 1841 6377397.155 metre 299.1528128
4258 GRS 1980 6378137 metre 298.2572221

If the axes units differ they may require conversion to a unit consistent with other linear parameters
required by the transformation method.

E.3.3. SQL script to retrieve names and codes of transformations forming a concatenated operation, given

concatenated operation code
(Access query qry_epsg_gn7_1_e33_tfmID_concat)

SELECT epsg_coordoperationpath.op_path_step, epsg_coordoperation_1.coord_op_code,
epsg_coordoperation_1.coord_op_name, epsg_coordoperationmethod.reverse_op
FROM epsg_coordoperation
LEFT JOIN epsg_coordoperationpath ON (epsg_coordoperation.coord_op_code =
epsg_coordoperationpath.concat_operation_code)
LEFT JOIN epsg_coordoperation AS epsg_coordoperation_1 ON
(epsg_coordoperationpath.single_operation_code = epsg_coordoperation_1.coord_op_code)
LEFT JOIN epsg_coordoperationmethod ON (epsg_coordoperation_1.coord_op_method_code =
epsg_coordoperationmethod.coord_op_method_code)
WHERE ((epsg_coordoperation.coord_op_code = xxxx) AND (epsg_coordoperation.coord_op_type =
'concatenated operation') AND (epsg_coordoperation.deprecated=0))
ORDER BY epsg_coordoperationpath.op_path_step;

OGP Publication 373-7-4 – Geomatics Guidance Note number 7, part 4 – May 2009
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org.

Page 32 of 32

Example: Input Concatenated Operation code = 8647
Step Coord Op Code Coord Op Name Op reversible?

1 1313 NAD27 to NAD83 (4) Yes (or 1)
2 1950 NAD83 to NAD83(CSRS) (4) Yes (or 1)
3 1946 NAD83(CSRS) to WGS 84 (2) Yes (or 1)

The details describing each of the component single operations may then be found using the SQL queries
in the previous example E.3.1 and if necessary also E.3.2.

© OGP 2004-2009
(OGP contact details, disclaimer and copyright notice to be inserted here).

