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Abstract The arid southwestern United States is susceptible to sustained droughts that impact water
resources and economic activity for millions of residents. Previous work has not systematically
investigated the structure, timing, and possible forcings of Holocene Great Basin sub-orbital hydroclimate
changes, impeding our ability to understand the potential future controls on Southwestern aridity. The
objective of this paper is to constrain the potential forcings on Holocene aridity and temperature, via
comparison of new high-resolution speleothem data, an Aridity Index synthesizing hydroclimate records,
and linkages of Southwestern paleoclimate to other regions. The high-resolution data from Leviathan Cave
provide a paleoclimate record since 13,400 yr ago: A cool Younger Dryas was followed by two

pronounced Middle Holocene aridity intervals between 9,850 and 5,310 yr B2k characterized by low growth
rates and high 8'%0 and 8"C values. Subsequently, stalagmite 5'®0 values show near-modern levels for
the last four millennia during which time growth rates were high and 8'*C values were low in response to
wetter conditions. The regional Aridity Index documents that Middle Holocene drying coincided with a
warm Arctic and decreased sea ice extent, a warm western tropical Pacific, and a large sea surface
temperature gradient across the tropical Pacific, all of which likely responded to northern hemisphere
summer insolation forcing. Our data suggest that extreme Middle Holocene aridity is more severe than the
short medieval droughts evident in the tree ring record, and such extreme aridity may represent a worst-case
analog for future climate.

1. Introduction
1.1. Modern Controls on Southwestern Aridity

There is a compelling need for a precise understanding of the drivers of Holocene hydroclimatic variability
in the southwestern United States (hereafter “the Southwest,” comprising Arizona, Nevada, New Mexico,
and the southern tiers of California, Utah, and Colorado), to guide policies and to respond to anthropo-
genic climate change (Cook et al., 2015). For the modern period, climate dynamical studies have demon-
strated that Southwestern drought is linked to warming in western tropical Pacific sea surface temperature
(SST) and warming in the Arctic (Routson et al., 2019; Swain et al., 2017), both of which are associated
with a strengthened north Pacific subtropical high-pressure cell and reduced midlatitude winter precipita-
tion (Cvijanovic et al., 2017; Kirby et al., 2015; Meehl & Hu, 2006; Seager et al., 2015; Sewall, 2005; Swain
et al., 2017). Although there remains uncertainty in whether reduced Arctic sea ice forces an atmospheric
response in the northeast Pacific (Cohen et al., 2020; Overland et al., 2016; Swain et al., 2017), observa-
tional evidence suggests that pan-Arctic warming is associated with warmer winter temperatures in
Western North America (Cohen et al., 2020) connected to changes in the Siberian High and/or sea-ice con-
ditions. Midlatitude Pacific and Atlantic SSTs have also been linked to Southwestern drought variability
(Aziz et al., 2010; Oglesby et al., 2012). While recent changes in Southwest precipitation have been asso-
ciated with pronounced ridging and high pressure in the northeast Pacific arising from teleconnections
to tropical Pacific warming and sea ice decrease in the Barents and Kara Seas (Swain et al., 2017), the
degree to which these remote teleconnections may affect climate, if at all, over the Holocene Epoch
remains less clear, thereby impeding our ability to project long-term future changes in this water-limited
region. A large concern is that rising greenhouse gas concentrations and associated climate responses
may result in a change in the Southwest's climate toward long-term aridification in the Southwest
(Cook et al., 2015), with implications for sustaining human populations reliant on water resources in this
arid region.
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= Colorado River flow (Mote et al., 2018; Woodhouse et al., 2016), and cli-
§ mate projections suggest a hotter and drier Southwest (Seager &
Age (yr B2K) Vecchi, 2010) that will exacerbate water limitation. Of particular concern

to water supply are “hot droughts” (Udall & Overpeck, 2017), which arise

Figure 1. Leviathan Cave 8'°0 variations over the last 175,000 yr track ~When anomalous warmth and drying amplify water shortages.
northern hemisphere summer insolation (21 June). These data show that Anthropogenic warming of the climate system may make hot droughts

summer insolation is a prime forcing on Great Basin paleoclimate on more common, as the Southwest is expected to dry because of increased

orbital time scales but that the cSlgoiVC values lag NHSI by >3,000 yr on
average. Data from Lachniet et al. (2017). Bold blue curve is a zero-phase
Butterworth filter. U-series ages are shown with the bars on the bottom
plot; hiatuses are represented by breaks in the time series.

evaporative demand (Ault et al., 2016), a likely northward shift of storm
tracks (Salathé, 2006), and decreased snow pack, Colorado River stream-
flow, and soil moisture (Cook et al., 2015; Fyfe et al., 2017; Seager &
Vecchi, 2010; Udall & Overpeck, 2017; Woodhouse et al., 2016). Recent
results point to increased aridification because of an increase in evaporative demand due to warmer condi-
tions, even if precipitation remains the same or increases (Williams et al., 2020).

1.2. Aridity Constraints From Paleoclimatic Data

Paleoclimate data allow understanding of the past behavior of climate on timescales longer than the instru-
mental record. The paleoclimate perspective on Southwestern drought over the last few millennia is pro-
vided primarily from tree-ring records, which revealed that decadal- to centennial-scale droughts were
common features of natural climate variability (Cook et al., 2010; Meko et al., 2007; Williams et al., 2020;
Woodhouse et al., 2010). For example, during Medieval time (CE 800-1300) there was widespread drought
on the Colorado Plateau and Sierra Nevada (Cook et al., 2010). For the upper Colorado River Basin, the ten
year drought between 1146 and 1155 was selected as a “worst case” future analog drought (Woodhouse
et al., 2010). These so-called Medieval “megadroughts” have been attributed to a La Nifia-like climate state
in the tropical Pacific Ocean (Graham et al., 2007; Routson et al., 2011; Williams et al., 2020; Woodhouse
et al., 2010) or to stochastic variability (Coats et al., 2016). However, only a few dendroclimatic records
extend beyond the past two millennia (Millar et al., 2018; Salzer et al., 2014) and may not fully represent a
long-term shift towards a more arid climate state because they do not extend through the Middle Holocene.

Previous work on the Nevada speleothem (cave calcite) record indicated a strong orbital signal in the
temperature-sensitive 8'80 data (Lachniet et al., 2014, 2017). On orbital timescales (Figure 1), Nevada spe-
leothem data show that Great Basin climate exhibited a one-to-one correlation with northern hemisphere
summer insolation (NHSI) on June 21, with a temporal lag that averaged 3,240 yr (Lachniet, 2016;
Lachniet et al., 2014, 2017). The strong orbital character of the Leviathan Cave and Lehman Caves composite
record (Figure 1) is evident from the strong visual similarity to northern hemisphere summer insolation at
65°N. Other Holocene 8'®0 speleothem records from Lehman Caves do not show this strong orbital charac-
ter (Steponaitis et al., 2015), suggesting that their response to northern hemisphere paleoclimate is registered
differently than in our records. The lagged relationship between Leviathan Chronology §'®0 and insolation
was suggested to have arisen through the indirect forcing of changes in the Arctic cryosphere, because of its
relatively fast response to northern hemisphere temperature and insolation (Lachniet et al., 2014, 2017). A
direct precipitation 8'®0 response in the Great Basin to insolation variation is less likely because peak
8'80 at ~8,400 yr B2K was reached several thousand years after the ~11,000 yr B2k insolation peak.

However, the previous work focused only the significance of the orbital-scale §'®0 variations and did not
investigate the sub-orbital structure of Holocene temperature and aridity evolution, the timescale of
Holocene climatic change, or possible links to the Pacific Ocean. The lower resolution isotope data
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Figure 2. Correlations between climate divisional data (1895-2015) for (a) Palmer drought severity index and (b) Max
annual temperature, between the climate division containing Leviathan Cave (white star) and other regional divisions.
For PDSI, the strongest correlations are found for the climate division containing the Sierra Nevada (R = 0.81),
southern California (R = 0.67), and along the Colorado River corridor in the upper and lower basins (R > 0.5 to 0.8; thick
black polygons). Maximum temperature correlations exceed R > 0.8 along the entire lower Colorado River Basin and
R > 0.63 for the upper Colorado River, suggesting that the Leviathan Cave record should be representative for the
broader southwestern United States.

previously presented may have also missed large-magnitude climate shifts operating on sub-centennial
timescales, a possibility that we can now assess with our new decadal resolution data. As such, the
potential controls on the Holocene climate evolution in the Leviathan Cave record or the broader
Southwest more generally have not yet been investigated in sufficient detail to test for other potential
forcings. Further, a compilation of additional moisture-sensitive proxy data, as we present below, will
assist in evaluating the spatial extent of Holocene hydroclimate variations.

Among the records in our Aridity Index, many document the presence of Middle Holocene dry intervals as
inferred from lake sediment, pollen, and packrat records at sites across the western United States (Bartlein
et al., 2014). These sites include the Great Basin and Sierra Nevada (Grayson, 2011; Harrison et al., 2003;
MacDonald et al.,, 2016; Thompson et al., 1993), Mojave Desert (Kirby et al., 2015; Wigand &
Rhode, 2002), Great Basin desert (Shuman et al., 2010), Sonoran Desert (Blinn et al., 1994), and Rocky
Mountains (Shuman & Serravezza, 2017). For the Sierra Nevada, the Middle Holocene aridity was
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Al-1 attributed to changes in Pacific Ocean sea surface temperature (Kirby
et al., 2015; MacDonald et al., 2016) analogous to persistent La Nifia-like
conditions with a cool east and warm western tropical Pacific and to estab-
lishment of modern boundary conditions following retreat of the
Laurentide Ice Sheet. Additionally, a time-slice comparison between
6 ka and modern against model output suggests that atmospheric ridging
reduced the amount of winter precipitation reaching much of the western
United States during the Middle Holocene, and regions near the U.S.
Southwest/Mexico border were wetter because of an enhanced summer
rainfall contribution (Hermann et al., 2018). Further, analysis of North
American pollen data suggests long-term warming throughout the
Holocene, reaching near-modern levels at around 7,000 yr BP with only
a slight decrease to the modern (Marsicek et al., 2018) in a manner that
is inconsistent with an NHSI periodicity and the 175,000 yr long
Leviathan speleothem record (Lachniet, 2016; Lachniet et al., 2014, 2017).

1.3. Study Area and Climate

Leviathan Cave (37.89°N, 115.58°W, 2,400 m) is located in the
Worthington Mountain Wilderness in Basin and Range National
Monument in central Nevada and is part of the southern Great Basin.
The precipitation seasonality for the study area is representative of the
broader Pacific Southwest, Great Basin, and lower Colorado River Basin
and is dominated by winter precipitation delivered by synoptic storm sys-
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0.00H BERIRARIRERARARARERAREREL 200 which are sometimes concentrated into narrow but concentrated bands of
c © o © o o o O moisture known as atmospheric rivers (Dettinger, 2013; Gershunov

8 8 8 8 8 8 8 et al., 2017). Summer precipitation from the North American Monsoon

N < O o 8 N 3 that reaches the cave site arises almost entirely from the Gulf of

Age (yr B2K) California. Gulf of Mexico moisture rarely reaches the Great Basin but

does substantially contribute to rainfall in Arizona, New Mexico, Utah,

Figure 3. High-resolution stable isotope values, U-series ages, and growth ~and Colorado (Jana et al., 2018). While summer monsoon moisture is a
rate for stalagmite LC-1. The 5"®0jyc and 5'>C values (thin blue and significant contributor to annual precipitation totals in some areas, parti-
green lines) are shown with a 101-yr running averages (thick lines). Thin  cularly in the Sonoran and Chihuahuan Deserts of Arizona and New

gray line is measured 8"80 values before ice-volume correction. U-series
ages show 2-o uncertainties. Growth rate was slow until it increased
dramatically in the late Holocene. Aridity intervals 1 and 2 (AI-1 and AI-2)

Mexico (Hereford et al., 2006), it typically does not contribute to ground-
water infiltration in the Great Basin (Winograd et al., 1998) or to stream-

are shown in yellow bars, and the Cool Oscillation (CO) in blue. flow in the Upper Colorado River Basin (Serreze et al., 1999).

To test for the spatial correlation structure between our site and the
broader Southwest, we correlated annual climate data for the Leviathan Cave climate division (Nevada cli-
mate division 3) against Pacific Southwest divisions (Figure 2) between 1895 and 2015. This comparison
shows that the Leviathan Cave region is representative of climate conditions in most of the Mojave Desert
and southern Great Basin, with Pearson R correlations of around 0.7 to 0.8 for Palmer Drought Severity
Index values and 0.8 to 0.9 for maximum temperature between divisions. The study area is also modestly cor-
related in PDSI to the lower (R ~0.5 to 0.7) and upper (R ~0.4 to 0.65) and Colorado River basins (Figure 2).
These data show that the drought and temperature signature of modern climate variability shares similarity
between our study area and the broader Pacific Southwest, such that our data have implications for the
broader desert region.

2. Methods

Holocene paleoclimate in stalagmite LC-1 is constrained by 840 8'%0 and 8"C values, with subsampling at a
higher resolution than previous publications (Lachniet et al., 2017). Stalagmite LC-1 from Leviathan Cave,
Nevada was milled at 0.1 to 0.2 mm intervals over the uppermost 85 mm depth, drilled at 0.5 mm resolution
between 85 and 154 mm, milled at 0.25 mm resolution between 154 and 171.75 mm, and milled at 0.1 mm
intervals between 171.75 and 184.75 mm, providing temporal resolution of <5 to ~60 yr (Figure 3). 8'*0 and
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8'3C values were determined on a Kiel IV carbonate device via phosphoric acid digestion at 70°C and ana-
lyzed on a Delta V Plus dual inlet mass spectrometer. Isotopic values were calibrated against an in-house
internal standard that was calibrated to international standards NBS-18 and NBS-19 in a two-point calibra-
tion; mean precision for 8'*0 and 8'C is 0.08%. and 0.06%o, respectively. We corrected 8'*0 values for ice
volume-driven changes in ocean water "0 by subtracting changes in ocean water §'*0 values from the
reconstruction of Waelbroeck et al. (2002), denoted here as §'%0;,. (Figure 3). The magnitude of this correc-
tion is small (<0.7%o at the Younger Dryas [YD], tapering to 0%. for the modern) and has no effect on the
interpretations of the data. Water §'%0 and §°H values were determined on a high-temperature thermal con-
version elemental analyzer (TC/EA) via pyrolysis at 1,400°C in the presence of glassy carbon and analyzed
via continuous flow on a ConFlo III device. Values were calibrated to internal standards that were calibrated
to international standards; mean precision for 80 and 8*H is 0.2%. and 2.0%, respectively. All stable iso-
tope determinations were made at the Las Vegas Isotope Science Lab at the University of Nevada Las Vegas.
Ages were determined at the University of New Mexico Radiogenic Isotope Laboratory, reported as years
before the year 2000 CE (yr B2k). For the Holocene section of LC-1, 16 U-series ages are all in stratigraphic
order. The high precision (2 o age uncertainties are better than + 96 yr) of the U-series ages is a result of high
uranium concentrations and initial 82**U values (>1,900%.). The age model consists of linear fits to the
U-series age/depth relationships, and additional details of the age modeling for stalagmite LC-1 were pre-
viously reported (Lachniet et al., 2014).

3. Results

Leviathan Cave today has constant 100% relative humidity in the sampling room and constant temperature
of 8.32 + 0.06°C, making an ideal environment in which calcite §'®0 values appear to have been deposited in
apparent isotopic equilibrium with cave drip waters (Lachniet et al., 2014). Seven pool water samples fed
from drips in Leviathan Cave were collected in 2011, 2012, and 2013 and have 8180 values of —14.0%o,
—14.2%o0, —13.0%o0, —13.0%o0, —13.6%0, —13.3%o, and —13.2%. VSMOW, with corresponding deuterium excess
values of 8.8, 9.2, 5.3, 2.5, 8.0, 11.1, and 9.0. The uppermost LC-1 880 value is —10.8%0 VPDB. At the mea-
sured cave temperature of 8.32°C, this calcite would be in apparent isotopic equilibrium with drip water
values of —13.66%0 VSMOW (Daéron et al., 2019) or —13.59%0 VSMOW (Coplen, 2007), nearly the same
as the measured pool water samples. Comparison of the pool waters and cave drip water to seasonal preci-
pitation 8*%0 values suggests that the infiltration is dominated by winter precipitation, as is most recharge in
the Great Basin (Winograd et al., 1998). We conclude that summer rainfall does not currently make a signif-
icant contribution to rechargeat our cave site, though it may have contributed in the past if summer preci-
pitation amounts were higher.

Stalagmite LC-1 8'%0j,. values (in % VPDB) range from a low of —12.95%, during the Younger Dryas
(12,580 yr B2K) to a max of —9.24%o. (8,380 yr B2k) (Figure 3; Data Set S1). The post-YD 8180 increase
was punctuated by two abrupt “overshoots” at 11,550 yr B2k and 10,580 yr B2k. The transition out of the
YD occurred over 3,400 yr. Following peak §'0 values at ~8,400 yr B2k, an abrupt negative §'*0 anomaly
between 7,740 and 6,730 yr B2k is superimposed on a more gradual 8'%0 decrease that reaches near-modern
levels at ~4,000 yr B2k. From 4,000 yr B2k to the modern, 8180 values vary between —12.5%0 and —11.0%o.
Since ca. 1,600 yr B2k, 5'®0 values show a tendency to increasing values. Carbon stable isotopes provide
complementary isotopic data. §**C values were high (approximately —2%o) during the YD and remained
between —2%. and —4%o. between the YD and the end of the Middle Holocene after which time the mean
value decreased to between —4%o and —6%o. The last 4,000 yr of stalagmite growth also show abrupt 8'>C
variability about the mean but do not show any §'%0 or §'3C high extremes that exceed the variability in
the Early and Middle Holocene.

3.1. Precipitation Isotope Constraints on Interpretation of Stalagmite §'*0

To determine the controls on modern precipitation §'®0 values and assist in the interpretation of speleothem
5'80jyc, We analyzed the relationship between precipitation 8'*0 values and temperature, precipitation
amount, and moisture source on 233 precipitation samples over 98 precipitation days collected in
Southern Nevada between 2007 and 2017 (Data set S2). Most of the samples were “grab” samples at the
sub-event scale in the Las Vegas Valley, but some represent full integrated precipitation events. The Local
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Figure 4. Southern Nevada Meteoric Water Line, 5'80 values in southern

Nevada span a range of nearly 30%.. The full data set define a local meteoric
water line that has a lower slope and intercept compared to the Global
Meteoric Water Line, indicating some evaporation of samples. If the LMWL is

based only on samples with 5'%0 values <6%o, the slope is 7.47 and the intercept

is +2.84. Dotted line is the Global Meteoric Water Line
(5°H = 8.17 x 8'%0 + 10.35).

Meteoric Water Line (LMWL; Figure 4) is defined as
8*H = 6.9 * §'%0 - 4.4, and 5'®0 values span nearly 30%.. The rela-
tively low slope and intercept indicate evaporation of some samples
in the sub-cloud environment. The meteoric water line determined
on samples with 8'®0 values of less than —6%. (approximately the
summer/winter cutoff) is 8*H = 7.47 * §'%0 + 2.84, which has a lower
slope and intercept than the Global Meteoric Water Line of
§°H = 8.17 * 80 + 10.35 (Rozanski et al., 1993); the intercept of
2.84 also indicates the possibility of some sub-cloud evaporation.
Histograms of seasonal rainfall show highest values in the summer
(June through October; —4.7 + 3.8%o0) and lowest values in the winter
(November through May, —12.3 + 4.1%o; Figure 5).

To test the relationship between precipitation 8'*0 and tempera-
ture, we show an analysis that used winter precipitation data from
19 sites across the Great Basin (Friedman, 2002), previously
reported in Lachniet et al. (2014). Winter amount-weighted precipi-
tation 8'%0 values are strongly correlated to mean winter tempera-
tures (¥ = 0.68, p < .000005) but not significantly correlated to
rainfall amount (¥ = —0.12, p = 0.14). These data (Figure 6a)
demonstrate that Great Basin winter precipitation is strongly
related to site temperature on a spatial basis. Next, we used the
weather type classification of Sheridan (Sheridan, 2002) to assign
each precipitation sample in our southern Nevada data set to a
synoptic type and determined daily maximum, mean, and mini-

mum surface air temperatures (in °C) and precipitation amount (mm) from the KLAS station
(36.08°N, 115.16°W, 659 m asl). The synoptic types are related to moisture source, with polar, midlati-
tude (“moderate”), and low-latitude (“tropical”) origins. The synoptic weather types with the most total
cumulative precipitation (Table 1) in our data set are, in descending order, Moist Moderate, Transition,
Moist Tropical, Moist Polar, Dry Moderate, and Dry Polar and Dry Tropical. The latter two types in our
data set are represented by only trace amounts. Most of the precipitation was generated in the Moist
Moderate type, which is characterized by a midlatitude moisture source over the Pacific Ocean or
Gulf of California. Moist Polar is associated with precipitation events resulting from transport of
high-latitude moisture to the Great Basin and is also a winter type. The Moist Tropical weather type
is characterized by low-latitude north Pacific moisture and is most common in October (end of the sum-
mer monsoon season) and November (beginning of the winter). There is not a specific event type asso-
ciated with the summer monsoonal rains in our study area, with Moist Moderate, Dry Moderate, and
Moist Tropical being the most common. We did not observe a clear relationship between 8'*0 values
and atmospheric rivers in our data set (not shown), a finding similar to that of a precipitation isotope
study upwind in California (McCabe-Glynn et al., 2016).

We show that there is also a strong control between moisture source, mean daily temperature of precipita-
tion events, and 830 values in Figure 6b. Precipitation derived from the North Pacific (Moist Polar weather
type) tends to be coldest (9.2 + 5.5 °C) and with lowest 880 values (—14.8 + 5.8%.). The Moist Moderate
event type is warmer (10.9 + 5.5 °C) and has intermediate 5'0 values (—11.9 + 4.0%o). The transitional type
is similar to the Moist Moderate type with only slightly higher §'®0 (§'0 = —11.0 + 4.9%. and mean
temperature = 11.9 + 6.1°C). Highest 5'®0 values are associated with the Moist Tropical type
(—=5.5 + 5.3%o0), which also has the highest temperatures of the “moist” types (19.7 + 7.7 °C). It is clear from
Figure 6 that lowest 8'%0 values indicate both a middle- to high-latitude moisture source and low tempera-
tures and vice versa for low latitude and summer moisture sources. The '®0 in Figure 6b is strongly corre-
lated with mean daily temperature of synoptic types, defined by an equation of §'*0 = 0.40 x Tmean —15.98
(¥ = 0.76, p < .05). Snow typically has the lowest values, in our data set ranging from —12.7%o to —22.6%o
VSMOW (n = 9) spanning the lower end of the winter 880 distributions (Figure 4) and very different from
summer monsoon values (830 = —4.7 + 3.8%o; Figure 5).
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This isotope climatology analysis (Figures 5 and 6) provides strong sup-

= 10t port for the interpretation of precipitation 5'®0 as a proxy for covariable
S moisture source and air temperatures. Further, because modern
8 51 Leviathan Cave drip waters are dominated by winter snowmelt
(Lachniet et al., 2014), stalagmite LC-1 ice-volume corrected oxygen iso-

ol v topes (8'%0;,c) are interpreted primarily as a proxy for winter moisture
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Figure 5. Summer and winter precipitation 580 histograms for Las Vegas.

The precipitation 8'%0 data show higher values in the summer and lower
in the winter. The drip and pool waters in Leviathan Cave, located at
~1,400 m altitude of ~—14 %o are consistent with a dominant source from
winter precipitation.

source and temperature. Because observed snow 80 values are lower
than rain for a given storm, a change from more to less snow during win-
ter would also be expected to result in higher drip water §'%0 values. We
interpret the 8"*C values in the stalagmite as an effective moisture proxy,
possibly modified by moisture-limited kinetic isotope effects, because
there is a positive correlation between Great Basin soil pedogenic carbo-
nate 8"3C values and effective moisture (Amundson et al., 1988; Quade
et al., 1989). These studies demonstrated that soil CO, has lower §'C
values in wetter conditions, because of enhanced plant respiration of iso-
topically light carbon, and this 8">C signal should also be imparted into
percolating soil waters that eventually reach the cave and speleothem cal-
cite. Further support for an effective moisture control on stalagmite 5'*C
values is evident in the strong correlation between high stalagmite growth
rates and low speleothem 8'C values (+* = 0.65) (Lachniet et al., 2014).
Higher stalagmite growth rates are thus interpreted to relate to enhanced
cave drip water CO, concentrations and higher bicarbonate concentra-
tions, and wetter periods are characterized by lower 8'*C values of dis-
solved inorganic carbon in soil waters infiltrating into caves. Because
stalagmite 5'>C values and growth rates may have multiple forcings other
than effective moisture (Fairchild & Baker, 2012; Wong & Breecker, 2015),

we consider them qualitatively. Because we are unable to unambiguously constrain precipitation amounts
from the speleothem isotopic data, we have also compiled an Aridity Index that constrains effective moisture
variations over the Great Basin and broader Southwest region (detailed below).

(a)

(b)

-10 7510 = 0.31 x Toourmany - 15.78 10 50 = 0.40 x T, - 15.98, (r* = 0.76, n = 7, synoptic types)
2= - 1620=0.42xT -16.18, (r* = 0.44, n = 233, all data)
(r*=0.68,n=19) 5 (mean)
i .68, ° |
B Y
= -12 — Synoptic Types
0 —]
g g i All data
E ) = -5 — ® A Transition
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Figure 6. Nevada grecipitation 880 values are correlated to temperature and moisture source. (a) shows the correlation
between winter 5'°0 and temperature in stations around the Great Basin (Friedman, 2002), demonstrating that winter
5'%0 values are strongly correlated to temperature. (b) shows that southern Nevada precipitation 580 values from
Las Vegas are also strongly related to mean event temperature and moisture source, with higher latitude synoptic
weather types associated with lower 8'80 values and lower temperature, and vice versa.
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Table 1

Stable Isotope and Climate Paramaters for Synoptic Weather Types Around Las Vegas, Nevada

Synoptic weather type

Mean 880
(%o VSMOW)

Mean 5°H Mean max T Meanmin T Mean mean T Mean precip  Sum precip
(% VSMOW)  Meandx  Count o) o) o) (mm) (mm)

Dry moderate
Dry polar

Dry tropical
Moist moderate
Moist polar
Moist tropical
Transition

=77
—11.3
—6.0
—-11.9
—14.8
=55
—11.0

+4.6
+2.0
E=SE
+4.0
+5.8
5.3
+4.9

=55 +35 59 +9.8 20 277 470 171 +6.5 224 +6.7 4.5 +5.8 90
—83 20 71 +3.6 2 139 0.0 42 +1.2 9.0 +0.6 Trace Trace Trace
—-49 +23 -1.1 <1438 10 347 +89 226 +7.5 28.6 +8.2 0.3 +0.4 3
—86  +31 9.8 +6.9 132 134 +59 84 +51 109 +5.5 10.5 +9.0 1,381
—108 +39 10.0 +9.6 9 124 +6.1 59 +5.0 9.2 +5.5 4.0 +7.9 36
—44 35 0.7 =+13.1 31 236 492 158 +64 19.7 +7.7 5.5 +4.4 171
-84 33 42 +79 24 151 7.3 8.6 +50 119 +6.1 7.2 +6.2 174

Because of the strong orbital character of the speleothem record, the high dating precision, continuity, and
high-resolution stable isotope and growth rate data from stalagmite LC-1, we consider the Leviathan Cave
record as a robust record of paleoclimate in the central and southern Great Basin. The strong correlations
between modern PDSI and temperature between the Leviathan Cave climate division and other divisions
in the Mojave Desert and southern Great Basin (Figure 2) suggest that it is likely to be representative of
paleoclimatic conditions there. Further, our record has moderate correlations that extend (somewhat less
strongly) into Arizona, southern Utah, and western Colorado, suggesting that our results may also be repre-
sentative of the broader Southwest in general and the Colorado River Basin in particular.

3.3. Great Basin Paleoclimate Since the Younger Dryas

The details of the Holocene Leviathan Cave record reveal several distinct climate shifts over time. We inter-
pret the sustained low 8'®0;,. values during the Younger Dryas to indicate cool conditions relative to the
early Holocene (Figure 3) associated with the ~4°C cooler sea surface temperature estimates from the north-
east Pacific Ocean (Barron et al., 2003). High 8'*C values and slow growth during the Younger Dryas are con-
sistent with the hypothesis of low soil productivity, which is plausibly linked to arid conditions. These data
conflict with interpretations of wetness in southern (Quade et al., 1998) and north Central Nevada
(Huckleberry et al., 2001). This apparent discrepancy may reflect increased recharge and less evaporation
during periods of lower temperature, allowing for aquifer recharge in southern Nevada or a lag time of regio-
nal groundwater discharge to climate changes.

Most prominently, the §'®0j, data show a gradual increase, reflecting warming or a change to a more south-
erly moisture source after 11,700 yr B2k to reach peak warmth at 8,380 yr B2k (Figure 3). The 2,180 yr inter-
val between 9,850 and 7,670 yr B2k coincided with high Slsoivc, high 8'3C, and slow growth rates, reflecting
the warmest and driest Holocene period. We term this Aridity Interval 1 (AIl), and it is defined by 5804
values above a threshold of —10.77%o, the peak value of a 101-yr moving average over the last 4,150 yr. Of
note, we observed no indication of a climate anomaly associated with the so-called 8.2 ka event (Alley &
Agustsdottir, 2005), and winter precipitation in the Great Basin appears not to have been affected at this
time, which stands in contrast with the supposition of a winter climate perturbation at this time upstream
in the Sierra Nevada (Oster et al., 2017). After a 900 yr-long cool oscillation between 7,670 and 6,770 yr
B2k, a second Aridity Interval (AI2) endured for 1,460 yr between 6,770 and 5,310 yr B2k. Our observations
of the two aridity intervals attest to the extreme dry Early to Middle Holocene climate state in the Great
Basin.

The peak 8'%0;,. value of ~—9.5% VPDB in the Middle Holocene corresponds to a drip water §'%0 value of
—12.4%0 VSMOW at modern temperature of 8.32°C or —11.9 %> VSMOW with 2°C warming above modern
levels using the most-recent calcite-water fractionation factor for slow-growing speleothems (Daéron
et al., 2019). The estimated paleo-drip water §'%0 values of —11.9%o to —12.4% VSMOW are the essentially
the same as the modern winter precipitation value in southern Nevada (Las Vegas) of —12.3 + 4.1%o
VSMOW, from a location that is slightly warmer and lower altitude than Leviathan Cave. In contrast, the
estimated paleo-drip water §'%0 values do not overlap with a summer monsoon signature (Figure 5). A con-
tribution to cave recharge of a larger than normal proportion of summer precipitation may have contributed
to the peak 8180, values, an idea consistent with data supporting an increase in the strength of the summer
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monsoon (Diffenbaugh et al., 2006; Metcalfe et al., 2015). However, a large contribution can be ruled out
because the estimated paleo-drip water values of around —12%. VSMOW are within the normal winter pre-
cipitation 5'%0 range (—12.3 + 4.1 % VSMOW). The simplest interpretation of the peak 5'80yyc value is that
during the Middle Holocene there was more winter moisture from middle- to low-latitude moisture sources,
such as the Moist Moderate and Moist Tropical sources, while the high 8'3C values indicate drier conditions.

In the Late Holocene, §'*0 and 8"C values decrease while growth rate increases, with a sudden step change
at around 4,200 yr B2k to apparently wetter and cooler conditions. Our data are consistent with the observa-
tion that a warm and arid Middle Holocene was followed by a wetter and cooler Late Holocene nearly every-
where in the broader Southwest (Grayson, 2011; Kirby et al., 2015; MacDonald et al., 2016; Polyak &
Asmerom, 2001; Thompson et al., 1993). This interval corresponds to the “Neopluvial” in the Bonneville
Basin when lake levels began transgressing at ca. 5,000 yr B2k, and our record indicates a decrease in
8'3C values and an increase in growth rate, substantiating both our interpretations of the stalagmite growth
rate and 8"3C as proxies for effective moisture and interpretations of beach geomorphology in the Bonneville
Basin reflecting lake high stands (Madsen, 2000).

3.4. An Aridity Index Indicates the Broad Spatial Scale of Middle Holocene Aridity

There is abundant regional evidence that shows warmer and drier conditions during the Middle Holocene in
Western North America (Bartlein et al., 2014) and the Great Basin and Sierra Nevada (Grayson, 2011). For
example, the Bonneville Basin experienced peak aridity ~8,500 yr B2k (Louderback & Rhode, 2009), coinci-
dent with peak Holocene temperatures (Madsen & Currey, 1979). The magnitude of this arid interval is sug-
gested by sedimentary evidence from the Great Salt Lake suggestive of complete desiccation (Madsen, 2000).
Sub-fossil trees from the White Mountains on the Nevada/California boundary (LaMarche, 1973) also docu-
ment a 150 m rise in tree line at ~8,300 yr B2k likely due to climatic warming. A similar observation of a 68 m
tree line rise in the Sierra Nevada was documented for Foxtail pine between ca. 7,200 and 3,900 yr B2k
(Scuderi, 1987). Hydrogen isotope (8D) variations in Bristlecone pines on the White Mountains document
peak values at 6,800 yr B2k, highest of the 8,000 to 4,100 yr B2k interval (Feng & Epstein, 1994), interpreted
to represent conditions warmer than today. Tree stumps submerged in Lake Tahoe document lake levels 5 to
12 m below the natural sill level by between 6,300 and 4,800 yr B2k (Lindstrém, 1990), and the now-drained
Tulare Lake in the Central Valley of California was also at low levels between 7,800 and 4,500 yr B2k
(Davis, 1999). Owens Lake contains a sediment hiatus between ca. 6,700 and 4,500 yr B2k on core OL84b
(Benson et al., 1997) or between 5,800 and 9,300 yr B2k on core OL-92 (Bischoff et al., 1997), and low stands
between 6,900 and 4,350 yr B2k (Bacon et al., 2006), attributed to arid conditions. Pollen data from Pyramid
Lake indicate driest conditions of the Holocene between 7,600 and 6,300 yr B2k (Mensing et al., 2004) and
lowest levels between ca. 8,000 and 4,800 yr B2k (Adams & Rhodes, 2019). In the Sierra Nevada, meadow
sediments document dry mid-Holocene conditions (Anderson & Smith, 1994), pollen data show a warmer
and drier climate prior to 6,800 yr B2k (Anderson, 1990), and peak fire occurrence rates mark the period
ca. 8,000 and 3,800 yr B2k when tree lines were higher than today (Hallett & Anderson, 2010). In southern
Nevada (Las Vegas Valley), spring-fed marshes largely dried up around 8,000 yr B2k and were replaced with
eolian deposits (Quade, 1986). Diamond Pond in southeastern Oregon was 17 m lower than modern prior to
6,200 yr B2k, when a saline-soil adapted biota (greasewood) dominated the pollen spectra (Wigand, 1987).
The xerophytic creosote bush was at highest concentrations during the mid-Holocene between ca. 7,700
and 5,800 yr B2k in southern Nevada, and species diversity was lowest in packrat middens relative to the late
Holocene (Spaulding, 1991). The Ruby Marshes in northeast Nevada showed slowest sedimentation rates
between 8,000 and 5,100 yr B2k, suggesting arid conditions (Thompson, 1992), and the Blue Lake meadows
on the western margin of Lake Bonneville largely dried between 8,300 and 6,500 yr B2k (Louderback &
Rhode, 2009). Stonehouse Meadow in northern Spring Valley was restricted or absent prior to 8,000 yr
B2k and began expanding after 7,500 yr B2k (Mensing et al., 2013). In the Silver Lake Playa, Mojave
Desert, sand percentages showed peaks attributed to enhanced eolian activity between ca. 8,000 and
4,400 yr B2k (Kirby et al., 2015). Taken together, these data suggest a broad period between ca. 8,500 and
5,000 yr B2k of dry conditions in the Great Basin and eastern Sierra Nevada.

To provide a broader context for Holocene hydroclimate records and to investigate the spatial fingerprint of
Middle Holocene aridity, we compiled an Aridity Index from 98 records—including those described above—
of Holocene paleoclimate from the Pacific Southwest, Sierra Nevada, Great Basin, Southwest, and through
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Figure 7. Aridity Index and site locations. (a) is the Aridity Index, showing a strong peak in sites recording their driest Holocene conditions between ca. 9,000 and
5,000 yr B2k. (b) shows location of records arranged by latitude and record number in Data set S3, which contains additional site details. Yellow star is
Leviathan Cave, and black thick black outlines are the upper and lower Colorado River Basins. (c) shows all records coded into hydroclimate

state, with red indicating aridity and light blue less aridity or wetter conditions.

the Rocky Mountains (Data Set S3, Figure 7). We included proxy records of effective moisture, such as lake
sediment records and, when possible, included midden data, though we note that the latter are
discontinuous, and the author's interpretations are often incomplete or contradictory. We assigned “wet,”
“dry,” “cold,” and “warm” states following the author's interpretation of climate conditions, with the
authors’ provided chronology, which in the publications were sometimes presented as generalized age
ranges. Because many of these records were published without sufficient archived data, we did not
attempt to complete new age modeling on their data and instead focus on the author's subjective
interpretations of climate states in their stated time intervals. To increase the sample size and
inclusiveness, we did not screen the records for chronological age density in order to provide the broadest
possible summary of hydroclimate records. The provided '*C ages were calibrated into calendar years
before the year 2,000 (yr B2k) using IntCall3 with range of 95.4% and reporting the mean + one o ages,
rounded to 10 yr; where no age uncertainty was provided, calibration input assumed uncertainty of +100
¢ yr. We did not tally fire/charcoal records, as the links to climatic change are not always clear. A
running percentage of aridity records was tallied by summing arid records into 250 yr intervals to
approximate the typical radiocarbon age uncertainty (Data Set S4). Because many of the records had
sparse dating control, variable sample resolution, and many of the records did not have archived data, we
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consider the aridity time series as a semi-quantitative index of aridity: The
height of the curve in Figure 7 represents the number of records in which
drought was evident. Further, because of the large sample size and conser-
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vative 250-yr age bins, age errors associated with individual records
should not have a major effect on the final Aridity Index, particularly on
the scale of the Early, Middle, and Late Holocene. The aridity data in
many of the proxies, lake levels being a prime example, represent effective
moisture that is precipitation minus evapotranspiration. Other proxies
(like pollen) may record growing season precipitation more directly
(Bartlein et al., 2014; Harrison et al., 2016). As such, the Aridity Index does

# of midden *4C dates

Figure 8. Correlation of the Southwest Aridity Index with a histogram of
radiocarbon-dated middens. The clear minimum of dated middens

not determine whether more-arid conditions are due to reduced precipita-
tion or increased evapotranspiration or some combination of the two. We
emphasize that it is possible to have periods of less effective moisture even

(histogram recalibrated into yr B2k) from the early to middle Holocene during times of increased precipitation providing evapotranspiration
coincides with peak aridity in the Southwest. While previously attributed to  exceeds the precipitation increase.

sampling bias by midden investigators, this comparison suggests that the . . . . . .
dearth of middens dating to the middle Holocene may be partly due to arid ~ Ihe Aridity Index time series demonstrates that regional climate during

conditions.

the Middle Holocene Aridity Intervals was mostly warmer and drier than

the Late Holocene (Figure 7), and such arid conditions extended from the
Pacific Southwest to the Sierra Nevada, Great Basin, Mojave Desert, Colorado River Basin, and Rocky
Mountains (Anderson, 2012; Kirby et al., 2013; MacDonald et al., 2016; Shuman & Serravezza, 2017). The
greatest number of records indicate that dry conditions peaked at around 7,400 yr B2k, lagging behind the
~10,000 to 11,000 yr B2k peak in summer insolation. The widespread aridity is supported by observation
of correlated modern climates from the Mojave, Great Basin, and Colorado River basin regions in
Figure 2. Some summer rainfall sensitive biotic proxy records indicate stronger Middle Holocene summer
rainfall than today, consistent with observations and climate dynamical modeling that suggests an increase
in the strength of the North American monsoon (Harrison et al., 2003; Metcalfe et al., 2015; Thompson
et al., 1993). A stronger summer monsoon during the Middle Holocene is supported by a diverse array of evi-
dence but could still be registered as increased aridity at many sites if potential evapotranspiration due to
warmer conditions exceeded the increase in precipitation. However, the high Aridity Index values in the
Middle Holocene indicate greatest aridity at most sites, a climatic feature that is particularly evident in
the low lake levels recorded across the Great Basin, Mojave Desert, and southern Rocky Mountains. As such,
the sites showing aridity during the Middle Holocene indicate that summer wetting due to a stronger mon-
soon was not strong enough to counteract the effects of higher temperatures or winter drying at
multi-annual time scales, likely because of reduced effective infiltration during the summer. This contention
is supported for the Great Basin, where modern data show that summer moisture is ineffective in recharging
aquifers (Winograd et al., 1998), a finding consistent with our observation in stalagmite LC-1 of reduced
growth rates and high 8'*C values prior to the Middle Holocene.

We also show a biotic response to the arid climates of the Middle Holocene in Figure 8. We compare a his-
togram of radiocarbon-dated packrat middens (with bin limits calibrated to calendar years B2k) in the
Southwest (Webb & Betancourt, 1990) to the Aridity Index, and the two are inversely correlated. While
the lack of Middle Holocene middens had been previously attributed to the investigator's sampling bias,
we show that a plausible alternative is widespread aridity, potentially resulting in fewer middens through
a reduction in packrat population sizes and/or decreased preservation potential. The potential for Middle
Holocene aridity to have driven changes in species composition and richness is also supported by the data
from Homestead Cave, Nevada, which showed a decline in small mammal species and diversity due to
extreme aridity (Grayson, 2000).

3.5. Potential Forcings on Great Basin Paleoclimate

We previously documented the strong correlation between Great Basin paleoclimate and Milankovitch for-
cing on precessional time scales over the last 175,000 yr from Leviathan (LC-1), Pinnacle (Lachniet, 2016;
Lachniet et al., 2014, 2017), and Lehman Caves (Shakun et al., 2011), Nevada (Figure 1). We observed that
Great Basin 8'%0 showed a strong similarity to 65°N summer insolation (21 June to 21 August), but lagged
behind it by >3,000 yr, a difference in timing we linked to indirect forcing by the Earth's cryosphere. The
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climatic evolution since the Younger Dryas also supports this overall orbital forcing of Holocene paleocli-
mate in the Great Basin. For example, summer insolation (21 June to 21 August) peaked at ca. 11,000 to
10,000 yr B2k, while peak warmth (as inferred from the LC-1 stalagmite record) in the Great Basin was
ca. 8,400 yr B2k. The peak in the Aridity Index at ca. 7,400 yr B2k also lagged the summer insolation peak
by about three millennia. Then, the Great Basin gradually returned to cooler conditions between ca. 8,400
and 4,100 yr B2k. A decrease in Leviathan Cave 5'®0 coincides with decreasing summer insolation, and this
trend to apparently cooler conditions (or more high-latitude moisture) was also associated with an increase
in soil productivity and growth rate, which we attribute to an increase in effective moisture. The trend to a
cooler and wetter climate over the Middle to Late Holocene is consistent with the precessional scale forcing
of Great Basin paleoclimate also observed over the last 175,000 yr (Figure 1).

But what were the mechanisms of sub-orbital-scale paleoclimatic change that may explain the structure and
timing of Holocene climate events? General circulation model (GCM) studies have attempted to place
Holocene paleoclimate records in the broader context of orbital, ice-sheet, and atmospheric forcings
(Bartlein et al., 2014; Harrison et al., 2016; Renssen et al., 2005; Zhang et al., 2010). During deglaciation, both
aretreat of the Laurentide Ice Sheet and rising summer insolation may have contributed to regional warm-
ing (Renssen et al., 2012), and greatest insolation seasonality was reached during the Early Holocene at
~10,000 yr B2k. Greenhouse gas concentrations (CO, and CH,) reached near pre-Industrial levels by ca.
11,000 yr B2k, and the Laurentide Ice Sheet was almost completely gone by ca. 7,000 yr B2k. In contrast
to these forcings, the LC-1 8180 record showed peak warming at 8,400 yr B2k, with a cooling toward the
modern that is not consistent with ice sheet retreat and greenhouse gases but is similar to the decreases in
both northern hemisphere summer insolation and insolation seasonality. This observation indicates that
the evolution of Great Basin paleoclimate is more strongly tied to insolation than other potential forcings
(Lachniet et al., 2017), as is clearly evident in Figure 1.

Some studies suggested that long-term insolation changes influenced Arctic sea ice via cooling from the
Middle to Late Holocene (Lachniet et al., 2017; Renssen et al., 2005; Zhang et al., 2010), in association with
positive ice-albedo and ice-insulation feedbacks (Yoshimori & Suzuki, 2019). Proxy evidence for decreasing
Arctic summer warmth over the Middle to Late Holocene is also shown by the decrease in prevalence of melt
layers in the Agassiz cap (Fisher et al., 1995) from a maximum at ca. 9,100 yr B2k to a near-modern mini-
mum levels at about 4,400 yr B2k, similar in timing to the aridity intervals in our speleothem data and to
the Aridity Index. Widespread midlatitude drying during the Middle Holocene, consistent with our analysis,
has been attributed to orbitally induced feedback responses originating in the Arctic that resulted in changes
in the latitudinal temperature gradient (Routson et al., 2019). Paleoclimatic change in the Great Basin is con-
sistent with the hypothesis that the region responded to summer insolation and feedbacks involving the
Arctic and/or the cryosphere that amplified high-latitude warming and increased the latitudinal tempera-
ture gradient (Cohen et al., 2020; Routson et al., 2019). We extend this observation with our new Aridity
and sea ice indices to show that the timing of Middle Holocene dry winter conditions in the Southwest coin-
cided with a warmer Arctic, reduced sea ice extent, and that these changes lagged the peak in summer inso-
lation by several millennia. The lag time in warmth, aridity, and low sea ice extents relative to orbital forcing
suggests that higher summer insolation could have contributed to these parameters in the Middle Holocene
but was unlikely to be the primary forcing.

Another possible cause of Holocene Great Basin paleoclimatic change involves variation in the strength and
frequency of the El Nifio/Southern Oscillation (ENSO) (Metcalfe et al., 2015) or, more broadly, the tempera-
ture evolution of the Pacific Ocean (Linsley et al., 2010). The transition to wet Late Holocene conditions in
the Great Basin may have been driven by enhanced strength and/or variability of ENSO, particularly in the
warm (El Nifio) phase (Barron & Anderson, 2011), which has been linked through modeling studies to
decreasing summer insolation over the Holocene (Cane & Clement, 1999). Arid conditions in the Sierra
Nevada and Mojave Desert of the western United States during the Middle Holocene were interpreted to
be related to La Nifia-like conditions in the tropical Pacific Ocean (Kirby et al., 2015; MacDonald et al., 2016),
an ocean-atmosphere linkage that today is associated with drought conditions.

To test among these ideas, we completed a Monte Carlo-based least-squares regression analysis. Ocean and
terrestrial paleoclimate time series were interpolated to a common interval (from most recent shared ages to
11,700 yr B2k) using a 250-yr time step and filtered using a 300-yr moving average. Correlations were
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Figure 9. Great Basin paleoclimate driven by sea surface temperature. (a) Leviathan LC-1 speleothem 5180m (this
study); (b) 21 June insolation at 65°N; (c) western tropical Pacific SST (MD76, Stott et al., 2004); (d) compilation of
‘WTP SST anomalies (Linsley et al., 2010); (e) pollen-based mean annual air temperature anomalies for North America
and Europe (Marsicek et al., 2018); (f) Northeastern Pacific SST (ODP-1019, Barron et al., 2003); (g) LC-1 growth rate on
inverted scale (this study); (h) LC-1 813C values (this study); (i) SST gradient between the Western tropical (MD76)
and Northeastern Pacific (ODP1019); (j) Aridity Index showing percentage of records of extreme aridity (this study);
(k) sum of low sea ice proxies in the Arctic indicating lowest sea ice extent in the middle Holocene, from Stranne

et al. (2014).
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determined using least-squares regression on both the interpolated and filtered data. For significance testing
of the correlations on the filtered data, Monte Carlo significance testing was used to create 10,000 random
time series with the same autocorrelation structure as the input time series, and each resulting time series
was correlated to the predictor time series to generate a population of Pearson R values from which quantiles
were determined to assess the significance level of the observed correlations. The filtered time series in gen-
eral better show the broad-scale climate teleconnections because much of the high-frequency variability is
removed. In the text, we indicate whether the correlations were based on the paired filtered or unfiltered
data, and we present those correlations that passed Monte Carlo significance testing.

To test for a similarity with the evolution of Pacific Ocean sea surface temperature, we correlated the
Leviathan data and the Aridity Index to SST records from the western tropical Pacific (WTP) cores MD76
and MD81 (Stott et al., 2004), Northeastern Pacific Ocean (NEP; site ODP-1019), and with the Gulf of
Mexico (MDO02-2575) (Barron et al., 2003; Ziegler et al., 2008). Further, to emphasize the broad Holocene
trends in SST evolution, we compared our data to a compilation of SST anomalies (SSTa) from eight cores
in the western tropical Pacific warm pool (Linsley et al., 2010). A strong predictor of Leviathan §'%0;,. is
SST in the western tropical Pacific, which captures the cool-warm-cool changes over the Holocene (filtered
61801\,c vs. MD76 SST, r = 0.65, p < .05), and even the cool oscillation centered on 7,000 yr B2k in the stalag-
mite has a counterpart SST decrease in core MD76 (Figure 9). More strikingly, the correlation between
Leviathan and the compilation of WTP SST anomalies (Linsley et al., 2010) is also high (unfiltered 5804
vs. WTP SSTa = 0.66, p < .05; Figure 9). Gulf of Mexico SST is similarly correlated to the Leviathan
Holocene record (filtered 830y vs MD2575 SST, r = 0.73, p < .05, not shown in Figure 8): Both records
share a gradual deglacial warming, peak warmth during the Middle Holocene, then cooling in the Late
Holocene. An insignificant inverse correlation to 5'80,y. is observed for the proximal northeast Pacific
(ODP-1019).

We also show that Leviathan Cave and Southwestern aridity are linked to the spatial structure of Pacific
Ocean SST (Figure 9) over the Holocene, in a similar manner as today. The moisture-sensitive Leviathan
813C record is positively correlated to the WTP SST at site MD81 (unfiltered 813C vs. MDS81, r = 0.45,
p < .05), to the WTP SSTa (unfiltered 8'3C vs. SSTa, r = 0.50, p < .05), and to the SST gradient between
the western tropical and northeastern Pacific (unfiltered 813C vs. ASSTwrp.nEp, F = 0.40, p <.05). An outlier
is the slight decrease in stalagmite 880, and 8'3C values during the cool oscillation, which do not have a
counterpart in the Aridity Index which instead showed the greatest number of dry records. We do not have a
good explanation for this observation, but it may relate to the higher resolution and strong chronological
control of the U-series dated stalagmite compared to the 250-yr bin size and significantly lower-resolution
radiocarbon dating of the records comprising the Aridity Index. We chose the MD76 and ODP1019 sites
to construct the cross-Pacific ASST record because the Western tropical Pacific is warm during La Nifa
events, and the site-proximal northeast Pacific Ocean is cool, and the combination of the two should be a
proxy for the strength of the ocean regions affecting aridity in the Southwest. The ASSTwrp.nEp gradient
shows that when zonal SST gradients are large, similar to a La Nifia structure, the Aridity Index is high
(>70% of records show aridity; unfiltered Aridity Index vs. ASSTwrp.ETP, r = 0.68, p < .05; Figure 9). This
correspondence of tropical Pacific spatial structure has been previously observed for Leviathan Cave and
the Mojave Desert (Kirby et al., 2015), and we now show that it applies more broadly to the Southwest.

These relationships suggest a common origin. When tropical insolation is high, enhanced warming in the
western tropical Pacific increases the WTP to ENP SST gradient, a configuration in the modern climate that
is also associated with aridity in the west (Clement et al., 2000; Liu et al., 2003). Following the pronounced
arid intervals of the Middle Holocene, Late Holocene wetting commenced around 4,200 yr B2k when the
Pacific zonal SST gradient weakened, as seen in decreasing st3C, faster growth rates, a cooler WTP, and
fewer extremely arid records (<40%).

In contrast, the time evolution of aridity and warmth (high speleothem §'®0 values) does not coincide with
pollen-inferred regional temperature change over North America and Europe (Marsicek et al., 2018). While
Southwestern aridity peaked ~8,400 yr B2k in the Leviathan record, and ~7,400 yr B2k in the Aridity Index,
pollen-based temperature reconstructions suggested warmest conditions were reached after ~5,000 yr B2k
when the Aridity Index had already begun to transition to wetter neopluvial conditions (Figure 9). The lack
of coherence between the pollen-based temperatures and hydroclimate in the Southwest suggests that a
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direct temperature control was less important to aridity than atmospheric circulation and/or teleconnections
or that the speleothem and pollen data are recording different seasons or processes.

Highest §'0 values, slow growth rates, and high 8'>C values in stalagmite LC-1 indicate warm and arid con-
ditions during the Middle Holocene. The timing of Great Basin paleoclimate changes is coincident with
reduced Arctic sea-ice extent associated with the orbitally controlled Holocene thermal maximum
(Funder et al., 2011; Kaufman et al., 2004). The relationship between high Arctic temperatures and low
sea ice is consistent with the hypothesis of a teleconnection to the Southwest in a manner analogous to
today, where a warm Arctic and low sea ice have been linked to dry conditions (Swain et al., 2017). To test
this idea in more detail, we created a summed distribution of low Arctic sea ice proxies from data reviewed
by Stranne et al. (2014) (their Figure 4) with ages calibrated into years B2k. These records comprise
paleo-proxy data on Arctic sea ice and include abundance of drift wood on Arctic beaches, beach ridges,
and geochemistry of sediment cores, for example, the IP,5 proxy (Stranne et al., 2014). The records are con-
centrated in the North Atlantic Ocean sector of the Arctic and come from the central Arctic Ocean (Cronin
et al., 2010; Hanslik et al., 2010), off the Chukchi Sea (De Vernal et al., 2005), Ellesmere Island (England
et al., 2008), North and Central Greenland (Bennike, 2004; Funder et al., 2011), the Canadian Arctic archi-
pelago (Belt et al., 2010; Dyke et al., 1996; Vare et al., 2009), and west of Spitsbergen and the East Greenland
Shelf (Miiller et al., 2012). We digitized the start and end times of the intervals represented by low sea ice and
summed the number of sites recording low sea ice into 250-yr intervals. The summed low sea ice index thus
indicates the number of sites around the Arctic (primarily in the Atlantic sector) that indicate low sea ice
conditions at a given time. As with our approach for the Aridity Index, we used the low sea ice proxy data
on the original author's chronology and interpretation. We also note that the first strong evidence of signifi-
cantly reduced sea ice in the Arctic only occurred following deglacial warming in the Early to Middle
Holocene, when other evidence indicates warm Arctic conditions (e.g., melt events in the Agassiz Ice Cap,
Fisher et al., 1995), so older sea ice records are not present in the sea ice compilation because of unfavorable
conditions for its growth. There is a strong similarity in timing of Southwest aridity and Arctic sea ice—at
least for the variations captured by the (Stranne et al., 2014) study—and the two indices are strongly corre-
lated (Figure 9); unfiltered aridity index versus low sea-ice records, r = 0.85, p < .05). Both the aridity and low
sea ice data show peak warm conditions on a sub-orbital scale between ~9,000 and 5,000 yr B2k, which coin-
cided with widespread Arctic warmth between 8,950 + 2,100 and 5,950 + 2,600 yr B2k (Briner et al., 2016;
Kaufman et al., 2004). Both the aridity and low sea ice data are lagged for a few millennia after the peak
in summer insolation, similar to what we observe in the Leviathan Cave isotopic data. Low Middle
Holocene sea ice extent has been attributed to increased Northern Hemisphere summer insolation
(Renssen et al., 2005; Zhang et al., 2010), and sea ice may have disappeared completely during summers
(Stranne et al., 2014) coincident with the Middle Holocene arid intervals.

4. Discussion

Our comparisons show that the evolution of Holocene climate in the Great Basin and other areas of the
Southwest coincided with climatic change in other regions. For example, our 8'0;,. record shows strong
correlations to SST in the western tropical Pacific Ocean and to the SST gradient across the tropical
Pacific Ocean (Figure 9). These observations suggest that the Pacific Ocean's influences on aridity during
the Holocene were similar to those observed today. Importantly, the precessional-scale §'%0;, signal—
including the peak warmth around 8,400 yr B2k and cooling to the modern—cannot be explained by a sim-
ple hypothesis of ice sheet forcing, because the North American ice sheets had largely disappeared prior to
~7,000 yr B2k while the Great Basin shows a cooling trend along with decreasing insolation. If ice sheet
retreat were the primary control on Great Basin 8'®0 variations, we would expect to see constant values fol-
lowing deglaciation. Instead, we observe a §'%0 decrease that is similar in magnitude but in the opposite
direction, to the 8'®0 increase coming out of the Younger Dryas.

Additionally, we consider the potential linkages between Middle Holocene aridity in the Southwest and the
extended period of warm and low sea-ice conditions in the Arctic between ca. 9,000 and 5,000 yr B2k (Briner
et al.,, 2016; Kaufman et al., 2004; Stranne et al., 2014). Does sea-ice loss in the Arctic force atmospheric cir-
culation change in the Southwest? Or do the two regions respond more simply to a common forcing without
middle- to high-latitude interactions? Some evidence suggests that atmospheric circulation responds to
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Figure 10. Climate states contributing to aridity in the western United States. The widespread spatial pattern of heat and
aridity in the Western United States was associated with a warm GOM, cool NEP, and a large west-to-east tropical Pacific
SST gradient, producing high pressure and aridity over the Southwest. Yellow dots are sites compiled in the Aridity
Index, and the large blue dot is Leviathan Cave, Nevada. See SM for site details.

climatic anomalies in the Arctic, but the strength, persistence, and causality of linkages between these
regions remain a point of debate in the literature (Cohen et al., 2020; Overland et al., 2016). For example,
observational evidence suggests that winter atmospheric circulation responds strongly to summer sea-ice
cover (Francis et al., 2009) and that summer warming may persist into the autumn and winter (Park
et al., 2019). However, the potential connections between Arctic amplification and midlatitude weather
are not yet considered robust for the modern period because of the short instrumental record and may be
instead related instead to natural variability (Cohen et al., 2020). For a longer time-scale perspective on
these potential linkages, indications from the paleoclimate record and model-data comparisons are useful.

An analysis of proxy data and model output has shown that the combination of higher summer insolation
during the Middle Holocene resulted in Arctic amplification of hemispheric temperature anomalies, a
decrease in the latitudinal temperature gradient, and a general drying of the midlatitudes (Routson
et al., 2019). These linkages operate in a manner consistent with our observations of high speleothem
6180ivc values and aridity during the Middle Holocene when the Arctic was warm and sea ice was low.
Other model results indicate that summer insolation can control both winter sea-ice extent and winter
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temperature, providing a plausible link between the Arctic and Great Basin climates (Renssen et al., 2005).
Warmer winter temperatures may have also resulted from decreased summer sea ice cover via the ice
insulation/temperature feedback, with less sea ice cover facilitating ocean to atmosphere heat exchange.
While the modeling and observational data for the instrumental period suggest ambiguity in exactly how,
or if, Arctic feedbacks influence midlatitude climate (Cohen et al., 2020), the paleoclimatic data suggest simi-
larities between the two in the Middle Holocene (Routson et al., 2019).

Increased summer insolation in the northern hemisphere likely was the ultimate driver of both the changes
in the Arctic and warming of the western tropical Pacific Ocean, and those changes may have provoked
enhanced aridity in the West in a manner analogous to the modern climate, with a strengthened subtropical
high pressure cell and a reduced latitudinal temperature gradient (Routson et al., 2019). There is some evi-
dence that the Middle Holocene is not a strict analog for future climate changes (Bartlein et al., 2011;
Renssen et al., 2012), whereas other work found that both insolation and greenhouse gas increases can result
in Arctic warming (Yoshimori & Suzuki, 2019). Future high-latitude warming and sea ice loss, whether from
higher northern hemisphere insolation as described here or from increasing greenhouse gases, may be of
similar magnitude as during the Middle Holocene (Schmidt et al., 2014).

Additionally, our documentation of extreme millennial-length Holocene aridity has important implications
for Southwestern hydroclimate and its potential links to the Arctic and Pacific regions (Figure 10). First, our
speleothem data and the Aridity Index show that the Southwest experienced arid intervals prior to anthro-
pogenic influence that were hotter, mostly drier, and longer than any other droughts over the last four mil-
lennia, including the so-called megadroughts and “worst-case” twelfth century Colorado River drought
(Cook et al., 2010; Woodhouse et al., 2010). This observation is important because it suggests that such arid-
ity might return in the future if boundary conditions in the Pacific Ocean and/or the Arctic return to Middle
Holocene-like states. Second, our data are consistent with and affirm on Holocene timescales the conclusion
of a strong Pacific Ocean control on modern western North America hydroclimate (Anderson, 2012; Kirby
et al., 2013; Kirby et al., 2015; MacDonald et al., 2016; Shuman & Serravezza, 2017), with a warming WTP
associated with western heat and aridity due to strengthening of the subtropical ridge and northward displa-
cement of storm tracks (Hermann et al., 2018; Sewall, 2005; Swain et al., 2017). The equatorial Pacific atmo-
sphere is projected to warm in the future (Kay et al., 2014), and such warming may initiate more persistent
atmospheric ridging off the West Coast of North America. While the future response of ENSO to greenhouse
warming is not entirely clear (Collins et al., 2010), should a trend to more La Nifia events occur it would
amplify aridity in the Southwest (Koutavas & Joanides, 2012; Stott et al., 2004) and weaken aridification
for more El Nifio events (Cai et al., 2018). Even absent ENSO variability, increased evaporative demand
and decreased snow to sustain Colorado River flow is projected for a warming world (Seager &
Vecchi, 2010; Woodhouse et al., 2016). Third, because the tropical and midlatitude North Atlantic is already
warming and will continue to do so in coming centuries (Cheng et al., 2017; Kirtman et al., 2013; Polyakov
et al., 2010), the Southwest is also likely to warm and dry if past associations continue for the future. Fourth,
the strong correlation between aridity, Arctic warmth, and low Arctic sea ice extents has potential future
implications: Should the hypothesis put forward by Francis et al. (2009) that sea ice influences midlatitude
temperatures turn out to be a robust feature of the climate system, reduced sea ice extent may lead to a
reduced latitudinal temperature gradient resulting in weaker midlatitude westerly flow and weaker cyclonic
conditions (Routson et al., 2019) and a strengthening of the subtropical high pressure cell (Wang et al., 2014),
resulting in warmer and drier conditions in the Southwest (Cvijanovic et al., 2017; Francis et al., 2009;
Renssen et al., 2005; Sewall, 2005; Swain et al., 2017) (Figure 10).

Given this long-term robust coupled variability between Southwestern aridity to tropical Pacific tempera-
tures and conditions in the Arctic, we posit that Southwest is at risk of a long-term aridification to extremes
that exceed in severity the limits of Late Holocene hydroclimate variations evident from the tree-ring record.
Should the causality of the teleconnections be affirmed, then further climatic changes in the tropical Pacific
and Arctic are likely to impact Southwestern hydroclimate via atmospheric teleconnections that act reduce
winter precipitation (Routson et al., 2019), having potentially profound implications for sustaining human
populations reliant on winter snowpack for water resources in the Colorado and Grande River Basins.
The true worst-case dry interval in the Southwest may, in reality, be more analogous to the
millennial-length Middle Holocene aridification than to the relatively minor so-called megadroughts of
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the Medieval. If true, future aridity is likely to be of longer duration (Seager & Vecchi, 2010; Woodhouse
et al., 2016) than historical droughts impacting water supply in the Southwest (Cook et al., 2015; Udall &
Overpeck, 2017). A case in point is the projection that Colorado River flow may be reduced by up to 50%
by the year 2100 under high greenhouse gas emissions scenarios due to lower snowpack and increased eva-
poration (Udall & Overpeck, 2017) and the possibility of a 60% reduction of snowfall in the Colorado Basin
headwaters (Fyfe et al., 2017). Because future climate outcomes are contingent on decisions made today,
adoption of targets to reduce greenhouse gas emissions to minimize oceanic and Arctic warming is insur-
ance to mitigate future Southwestern aridification. “Business as usual” scenarios for anthropogenic warming
carry the risk of tipping the Southwest into a state of extended aridification.

Data Availability Statement

Stalagmite LC-1, the Southwest Aridity Index, and precipitation 8'®0 data are available on the NOAA
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